
by Ralph Grabowski

Customizing
BricsCAD V20

Copyright Information

Copyright © 2019 by upFront.eZine Publishing, Ltd.
All rights reserved worldwide.

This book is covered by copyright. As the owner of the copyright, upFront.eZine Publishing, Ltd. gives you permission to make
one print copy. You may not make any electronic copies, and you may not claim authorship or ownership of the text or figures
herein.

Visit the Customizing BricsCAD Web site at http://www.worldcadaccess.com/ebooksonline/2015/04/cb15.html. At this Web page,
you will find editions of this book for BricsCAD V8 through to V19.

This twelfth edition is based on BricsCAD V20
16 December 2019

Technical Writer	 Ralph Grabowski
Technical Editing	 Bricsys Staff

All brand names and product names mentioned in this book are trademarks or service marks of their respective companies. Any
omission or misuse (of any kind) of service marks or trademarks should not be regarded as intent to infringe on the property
of others. The publisher recognizes and respects all marks used by companies, manufacturers, and developers as a means to
distinguish their products.

This book is sold as is, without warranty of any kind, either express or implied, respecting the contents of this book and any
disks or programs that may accompany it, including but not limited to implied warranties for the book’s quality, performance,
merchantability, or fitness for any particular purpose. Neither the publisher, authors, staff, or distributors shall be liable to the
purchaser or any other person or entity with respect to any liability, loss, or damage caused or alleged to have been caused
directly or indirectly by this book.

Summary of Contents

Full Table of Contents. . v

Part I — Customizing the BricsCAD Environment
Introduction to How to Customize BricsCAD . . 3
Adjusting BricsCAD’s Settings. . 21
Changing BricsCAD’s Environment. . 31
Adapting the User Interface To You. . 55

Part II — Working with the Customize Dialog Box
Introduction to the Customize Dialog Box . . 77
Customizing the Menu Bar & Context Menus. . 93
Customizing Toolbars and Button Icons. . 113
Writing Macros and Diesel Code. . 135
Customizing Ribbon Tabs and Panels. . 161
Customizing Keystroke Shortcuts, Aliases, & Shell Commands. 183
Customizing Mouse, Double-click, & Tablet Buttons. 201
Customizing the Quad . . 221
Customizing Rollover Properties . . 237
Customizing Multiple UIs with Workspaces. . 245

Part III — Other Customizations in BricsCAD
Designing Tool & Structure Panels. . 261
Creating Simple & Complex Linetypes. . 291
Patterning Hatches. . 303
Decoding Shapes & Fonts. . 315
Coding with Field Text . . 329

Part IV — Programming BricsCAD
Writing Scripts. . 359
Programming with LISP. . 367
Designing Dialog Boxes with DCL. . 399
Dabbling in VBA. . 431

Part V — Appendices
Command Summary. . 463
Summary of Variables & Settings. . 489
Concise DCL Reference. . 515
Concise LISP Reference. . 563

Full Table of Contents

Part I — Customizing the BricsCAD Environment

1.  Introduction to How to Customize BricsCAD. 3
The Many Ways to Customizing. . 4

Which Customization Do You Use?. . 5
Versions of BricsCAD. . 6

61 Tips for BricsCAD Users. . 7
For Further Reference. . 18

Reference and Tutorial Books. . 18
BricsCAD API References. . 19
DWG, DXF, and DWF References . . 20

2.  Adjusting BricsCAD’s Settings 21
Touring the Settings Dialog Box. . 22

Settings Dialog Box: Toolbar. . 23
Categorized/Alphabetic Sorting. . 23
Show Differences. . 24
Dialog Configuration . . 24
Finding Variables. . 25
Export Settings. . 26
Exporting Variables. . 27

Accessing Variables and Changing Values . . 28
Variables Specific to Windows. . 29

Changing Variables at the Command Prompt. . 29

vi    Customizing BricsCAD V20

3.  Changing BricsCAD’s Environment. 31
Starting BricsCAD. . 32

Command Line Options. . 32
Catalog of Command-Line Switches. . 34

No Switch - Load Drawings. . 35
B Switch - Script Files . . 35
L Switch - No Logo . . 35
LD Switch - Application Load . . 36
S Switch - Search Support Paths. . 36
P Switch - User Profiles. . 36
PL Switch - Batch Plotting. . 36
T Switch - Template Files. . 37
Regserver and Unregserver Switches. . 37

Other Startup Controls. . 37
Changing the Colors of the User Interface . . 38

Theme Color . . 38
Background Color. . 39
SETTINGS AT THE COMMAND LINE. . 40
Changing Cursor Color and Size. . 40
DISPLAY SETTINGS . . 41

Snap Marker Options. . 43
Hyperlink Cursor Options. . 44
Dynamic Dimension Options. . 45

Support File Paths. . 45
Summary of Files Settings. . 48

Files (and Paths) . . 48
Project Paths . . 50
Printer Support Paths and Files. . 50
Templates Paths and Files . . 50
Tool Palettes Path. . 50
Dictionaries Section. 50
Log Files Paths and Files. . 51
File Dialogs. . 51
Places Bar (Windows only). . 51

Reusing User Preferences. . 52
Launching the User Profile Manager. . 52

Using the Profile Manager. . 53

	 Table of Contents    vii

4.  Adapting the User Interface To You. 55
Customizing the Command Line . . 56

The Parts of the Command Bar. . 56
Resizing and Hiding the Command Line . . 56
Changing Command Bar Actions. . 57
Additional Command Line Variables. . 59
Even More Command Line Variables . . 63

Customizing the Look of the Ribbon. . 64
Handling the Ribbon. . 64

Related System Variables. . 66
Customizing the Look of Drawing Tabs. . 66

Related System Variables. . 67
Customizing the Look From Control. . 67

LookFrom Command. . 69
Related System Variables. . 70

Maximizing the Drawing Area. . 71
Using Multiple Monitors. . 71

Customizing Other UI Elements. . 73

Part II — Working with the Customize Dialog Box

5.  Introduction to the Customize Dialog Box. 77
Touring the Customize Dialog Box. . 79

ABOUT CUI FILES . . 80
Customize’s Menu Bar. . 81

ABOUT MAIN AND PARTIAL CUSTOMIZATION. . 81
CUI Customization Files. . 82

Search For Commands. 84
Tabs of the Customize Dialog Box . . 85
Shortcut Menus. . 85
Apply and OK Buttons. . 86
Viewing Changes Made to Customize. . 86

Additional Management Options. . 88
Using Partial Menus to Customize BricsCAD Correctly. 89

Setting Up a New Partial Menu. . 89
Sharing Customizations. . 90
Removing Partial CUI Files. . 92

viii    Customizing BricsCAD V20

6.  Customizing the Menu Bar & Context Menus. 93
Modifying the Menu Bar. . 94

QUICK SUMMARY OF MENU COMMANDS & VARIABLES. 94
Touring the Menu Tab . . 95
QUICK SUMMARY OF MENU PARAMETERS. . 96
Opening and Closing Nodes . . 97
Gray Dots and Separator Lines . . 97

Understanding Menu Title Conventions. . 97
Keyboard Shortcut - & . . 98
Dialog Box - 98
Menu Titles. . 98

Commands Use Macros. . 99
Cancel - ^c. . 99
Transparent - '. . 99
Internationalize - _. . 99
Enter - ;. . 99
Pause - \. . 100

Editing the Help String. 100
Tutorial: Adding Menu Items. . 101

Tutorial: Deleting Menu Items. . 103
Tutorial: Adding Tools to Menus . . 104
Context Menus. . 106

Tutorial: Customizing Context Menus. . 107
Tutorial: Sharing Menus . . 111

Importing AutoCAD Menus. . 112

7.  Customizing Toolbars and Button Icons. 113
QUICK SUMMARY OF TOOLBAR COMMANDS & VARIABLES. 114

Customizing the Look of Toolbars. . 114
Rearranging Toolbars. . 114

Tutorial: Dragging and Moving Toolbars. . 115
QUICK SUMMARY OF TOOLBAR PARAMETERS. . 116
Tutorial: Turning Toolbars On and Off. . 117

Making New Toolbars, and Modifying Them. . 118
Tutorial: How to Create A New Toolbar. . 118

Tutorial: Alternative Method. . 121
Adding Controls, Flyouts, and Separators. . 122

About Controls (Droplists) . . 122
Tutorial: Adding Controls (Droplists) to Toolbars. . 123
Customizing Controls (Droplists) . . 124

	 Table of Contents    ix

About Flyouts. . 125
Tutorial: Adding Flyouts to Toolbars . . 125

About Separators. . 127
Tutorial: Adding Separators to Toolbars . . 127

Removing Buttons, Renaming and Deleting Toolbars 128
Tutorial: Removing Buttons and Toolbars. . 128
Tutorial: Renaming Toolbars and Buttons. . 129

Customizing Buttons. . 129
SIZING BUTTONS . . 130

Modifying Button Parameters. . 130
Tutorial: Editing the Title Name and the Help String. 131
Tutorial: Changing the Command Macro. . 131
Tutorial: Replacing Button Images. . 132

8.  Writing Macros and Diesel Code. 135
QUICK SUMMARY OF METACHARACTERS IN MACROS. . 136

Simple Macros. . 137
Transparent Commands in Macros. . 138

Dashed Commands. . 138
Options & User Input. . 138

Options. . 138
Pausing for User Input . . 139
Combining Options and Pauses . . 139
Other Control Keys . . 140

Menu-Specific Metacharacters. . 141
Diesel Coding . . 141

About Diesel. 141
QUICK SUMMARY OF DIESEL FUNCTIONS . . 142

How to Toggle Check marks. . 143
Toggling Grayouts. . 144

Reporting Values of System Variables . . 145
Applying Variables Everywhere. . 147

How to Add Units . . 147
How to Solve Check Marks that Conflict with Icons. . 147
How to Deal with Two Sysvars. . 148
Reporting Through Diesel. . 149
Formatting Units. . 149

Formatting Diesel Output. . 149
Formatting Numbers. . 149

Fix . . 149
Index. . 150

x    Customizing BricsCAD V20

Nth. . 150
Rtos. . 150
Formatting Angles. . 151

Formatting Text. . 151
Upper. . 151
StrnLen . . 151

Variables in Diesel. . 152
Complete Catalog of Diesel Functions. . 152

Math Functions . . 152
Logic Functions . . 153
Conversion Function. . 155
String Functions. . 155
System Functions. . 157
Diesel Programming Tips. . 159

Debugging Diesel. 159
ModeMacro: Displaying Text on the Status Bar. . 160

9.  Customizing Ribbon Tabs and Panels. 161
QUICK SUMMARY OF RIBBON COMMANDS AND VARIABLES. 162

The Structure of Ribbons. . 163
Tutorial: How to Add Panels to Ribbon Tabs. . 164

Moving Panels. . 166
Copying Panels — Not. . 167
Removing Panels. . 167

Tutorial: Making New Tabs . . 167
QUICK SUMMARY OF CONTEXTUAL TABS. . 168
Adding Panels to A New Ribbon Tab . . 169
Moving Tabs Along the Ribbon. . 169
Making Copies of Tabs. . 169
Hiding Tabs in a Workspace. . 169

Customizing Ribbon Panels. . 169
Panel Design Tips. . 171

Tutorial: Populating a new Panel. . 171
Catalog of Panel Elements. . 174

Append Ribbon Panel / Insert Ribbon Panel. . 175
Delete . . 175
Add Launcher. . 176
Append Row / Insert Ribbon Row / Insert Row Panel. 176
Append Break / Insert Ribbon Break / Append Separator. 177
Append Split Button. . 178
Append Toggle Button. . 180

	 Table of Contents    xi

10.  Customizing Keystroke Shortcuts, Aliases,
 & Shell Commands . 183

QUICK SUMMARY OF SHORTCUT KEYSTROKES. . 184
Tutorial: Defining Shortcut Keys. . 187
Tutorial: Editing & Deleting Keyboard Shortcuts. . 190

Tutorial: How to Assign Multiple Commands. . 190
Customizing Command Aliases. . 191

Tutorial: Customizing Aliases. . 192
Tutorial: Creating New Aliases. . 192

Tutorial: Editing & Deleting Aliases. . 193
BRICSCAD ALIASES SORTED BY COMMAND NAME. . 194

Rules for Writing Aliases. . 197
Tutorial: Hand-Coding Aliases. . 197

Customizing Shell Commands . . 198
Tutorial: Editing Shell Commands. . 200

11.  Customizing Mouse, Double-click,
 & Tablet Buttons. 201

About Mice and Their Buttons. . 203
QUICK SUMMARY OF DEFAULT BUTTONS. . 204
About the Pick Button . . 205
About the Right Button . . 205
About the Middle Button. . 205
Troubleshooting. . 206

Other Input Devices. . 207
Digitizing Tablets. . 207
3D Mice. . 207
Touch Pads. . 209

Defining Actions for Mouse Buttons. . 210
Tutorial: Button Assignment. . 210
Tutorial: Assigning Shortcut Menus to Buttons. . 212

Tutorial: Writing Macros for Buttons. . 213
Customizing Double-click Actions . . 213

Changing a Double-click Action. . 214
Making a New Double-click Action . . 215

Defining Actions for Tablet Buttons. . 216

xii    Customizing BricsCAD V20

12.  Customizing the Quad. 221
QUICK SUMMARY OF QUAD VARIABLES. . 222

About The Quad . . 223
Step 1: Move Cursor Onto an Entity. . 223

Step 2: Expand the Quad . . 224
Step 3: Move Into Groupings . . 224

Tutorial: Drawing with Quad. . 225
Tutorial: Dimensioning with Quad. . 225

Modifying the Quad’s Behavior. . 226
Customizing the Quad . . 226

Tutorial: Customizing Quad Buttons . . 227
Customizing Quad Tabs. . 228

Where’s My New Tab?. . 230
Tutorial: Turning On Quad Groups (Tabs). . 230
Toggling Quad Tabs . . 232

About Quad ENtity Filters. . 233
Tutorial: Changing Entity Filters. . 233
How the Quad Works. Or, How Does It Know What Entity Is There? 236

13.  Customizing Rollover Properties 237
QUICK SUMMARY OF ROLLOVER PROPERTY SETTINGS. . 238
QUICK SUMMARY OF ROLLOVER PROPERTIES. . 240

Customizing Rollover Properties . . 241
Tutorial: How to Change Properties Displayed by Rollovers. 241

14.  Customizing Multiple UIs with Workspaces 245
Workspace Customization Elements . . 247

Adding and Removing Workspaces. . 247
Removing Workspaces . . 247
About Insert Separator. . 249

Toggling the Display of UI Elements. . 249
Workspace Property Toggles. . 249
Show Menus. . 252

Toggling Visibility of UI Elements . . 252
Toggling Menus. . 252
Toggling Toolbars. . 253
Toggling Panels. . 253
Toggling Ribbons. . 253
Toggle the Quad . . 253

	 Table of Contents    xiii

Fine-Tuning UI Elements . . 253
Workspace Properties for Menus. . 254
Properties of Toolbars. . 254
Properties of Panels. . 255
Proprieties of Ribbon Tabs. . 257

Properties of Quad Items. . 258

Part III — Other Customizations in BricsCAD

15.  Designing Tool & Structure Panels. 261
About the Tool Palettes Panel . . 263

QUICK SUMMARY OF VIEW OPTIONS. . 264

Navigating Tools Palettes . . 265
Icon Customization. . 266
Palette Customization. . 267

Customizing Tools. . 268
Customizing Tools Properties. . 268
Adding Programs and Macros to Tools. . 272

Organizing Tools with Groups. . 273
Creating Palette Groups. . 274
Importing Tool Palettes from AutoCAD. . 276

Sharing Tool Palette Groups by Exporting Them . . 276
Alternative Sharing Method . . 277

Customizing the Structure Panel . . 278
Structure Configurations . . 279

Customizing the Structure Panel. . 279
STRUCTURE OF .CST FILES. . 280
Group/Sort Tab . . 281
Examining Rules. . 282
Constructing Rules . . 283
Show/Skip Tab. . 289
Options Tab . . 290

16.  Creating Simple & Complex Linetypes 291
QUICK SUMMARY OF LINETYPE DEFINITIONS . . 292

About Simple and Complex Linetypes. . 293
Commands Affecting Linetypes. . 293

Loading Linetypes . . 294
Scaling Linetypes. . 294

xiv    Customizing BricsCAD V20

System Variables Affecting Linetypes. . 295
The Special Case of Paper Space. . 295
The Special Case of Polylines. . 296

Customizing Linetypes . . 297
At the Command Prompt. . 297

Testing the New Linetype. . 298
Creating Linetypes with Text Editors. . 299

Linetype Format (.lin). . 300
Line 1: Header. . 300
Line 2: Data . . 300
Complex (2D) Linetypes . . 300
Embedding Text in Linetypes. . 301

Text . . 301
Text Style. . 301
Text Scale. . 301
Text Rotation. . 302
Absolute. . 302
X and Y Offset. 302

17.  Patterning Hatches . 303
QUICK SUMMARY OF PATTERN DEFINITIONS. . 304

Where Do Hatch Patterns Come From?. . 305
How Hatch Patterns Work. . 306

System Variables that Control Hatches. . 307
Creating Custom Hatch Patterns . . 307

-Hatch Command. . 308
Hatch Command. . 309

Understanding the .pat Format. . 310
Comment and Header Lines. . 310

Comment. . 310
Start of Definition. . 310
Pattern Name. . 310
Description. . 311

The Hatch Data . . 311
Angle. . 311
xOrigin and yOrigin. . 311
xOffset and yOffset . . 311
Dash1,.... 312

Adding Samples to the Hatch Palette. . 312
Tips on Creating Pattern Codes. . 312

	 Table of Contents    xv

18.  Decoding Shapes & Fonts. 315
QUICK SUMMARY OF SHAPE DEFINITIONS. . 316

Fonts, Complex Linetypes, and Shapes . . 317
SHX Fonts. . 317

About Fonts in BricsCAD . . 318
Using SHX in Complex Linetypes . . 318
SHX in Shapes . . 318
SHX in GD&T. . 319
Shape Compatibility with AutoCAD. . 319

About Shape Files. . 319
The Shape File Format. . 320
Header Fields. . 321

Definition Start . . 321
shapeNumber. . 321
totalBytes. . 321
shapeName . . 321

Definition Lines . . 321
bytes . . 321

Vector Codes. . 322
Hexadecimal Conversion . . 322

Instruction Codes. . 323
End of Shape - 0/000. . 323
Draw Mode - 1/001. . 323
2/002: Move Mode -. . 324
Reduced Scale - 3/003 . . 324
Enlarged Scale - 4/004. . 324
Save (Push) - 5/005. . 324
Recall (Pop) - 6/006 . . 324
Subshape - 7/007. . 324
X,y Distance - 8/008 . . 325
X,y Distances - 9/009. 325
Octant Arc - 10/00A. . 325
Fractional Arc - 11/ 00B. . 326
Bulge Arc - 12/00C . . 326
Polyarc - 13/00D. . 327
Flag Vertical Text Flag - 14/00E. . 327

xvi    Customizing BricsCAD V20

19.  Coding with Field Text. 329
FIELD COMMANDS & VARIABLES. . 330

Placing Field Text. . 331
Field Command. . 331
Fields in MText. . 333
Fields in Attributes. . 335

Changing Field Text. . 337
Double-clicking Fields in MText . . 337
Editing Fields in Attribute Definitions. . 338

Controlling the Way Fields Update . . 339
UpdateField Command. . 339
FieldEval Command. . 339
FieldDisplay Command. . 340

Another Field Text Example. . 340
Updating the Field Text . . 341
COMPATIBILITY WITH AUTOCAD FIELD CODES . . 342

Understanding Field Codes. . 343
Complete Field Code Reference. . 344

Groups. . 344
Metawords. . 344
Formatting. . 344
Complete Format Code Reference. . 345

%tcn — Text Case . . 345
%lun — Linear Units. . 345
%dsn — Decimal Separator. . 345
%aun — Angular Units. . 345
%lwn — Line Weight units. . 346
%qfn — scale Factor. . 346
%ctn — ConverT. . 346
%ptn — PointTs (xyz coordinates). . 346
%.n — decimal places. . 346
%prn — display PRecision. . 347

%fnn — File Names. . 347
%byn — BYtes (file size). . 347
href - Hyperlinks . . 347

QUICK SUMMARY OF FIELD DATE AND TIME CODES. . 348
Date & Time Format Codes. . 349

Objects and Property Names. . 350
Properties in Common . . 350

	 Table of Contents    xvii

Object Properties. . 350
Arcs. . 350
Attribute Definition. . 351
Associative Dimensions. . 351
Blocks, Block Placeholders, and External References. 351
Circles. . 351
Ellipses. . 351
Hatches. . 352
Leaders . . 352
Lines. . 352
Mtext. . 352
OLE (object linking and embedding) objects. . 352
Polylines . . 352
Polygon Meshes. . 353
Polyface Meshes. . 353
Raster Images. . 353
Regions. . 353
Rays and Xlines . . 353
Shapes. . 353
Single-line Text. . 353
Splines. . 354
Tables . . 354
Tolerances. . 354
Viewports . . 354
3D Faces. . 354
3D Polylines . . 354
3D Solids. . 354
Sheet SetS. . 355

Named Object Properties. . 355

xviii    Customizing BricsCAD V20

Part IV — Programming BricsCAD

20.  Writing Scripts . 359
What are Scripts? . . 360

Drawbacks to Scripts. . 361
Strictly Command-Line Oriented. . 361

Recording with RecScript. . 362
Writing Scripts by Hand. . 363
Script Commands and Modifiers. . 364

Script . . 364
RScript. . 364
Resume. . 364
Delay. . 365
Special Characters. . 365

Enter - (space). . 365
Comment - ;. . 365
Transparent - '. . 366
Pause - Backspace. . 366
Stop - esc. . 366

21.  Programming with LISP. 367
The History of LISP in BricsCAD. . 368

BLADE Environment. . 368
Compatibility between LISP and AutoLISP. . 368

Additional LISP Functions. 369
Different LISP Functions. . 369
Missing AutoLISP Functions. . 369

The LISP Programming Language. . 370
Simple LISP: Adding Two Numbers. . 370
LISP in Commands. . 371
Remembering the Result: setq . . 372

LISP Function Overview . . 373
Math Functions . . 373
Geometric Functions. . 374

Distance Between Two Points . . 374
The Angle from 0 Degrees. . 374
The Intersection of Two Lines. . 375
Entity Snaps. . 375

Conditional Functions. . 375
Other Conditionals . . 376

	 Table of Contents    xix

String and Conversion Functions . . 376
Joining Strings of Text. . 376
Converting Between Text and Numbers. . 376
Other Conversion Functions. . 377

External Command Functions. . 377
GetXXX Functions . . 379
Selection Set Functions. . 381
Entity Manipulation Functions. . 381
Advanced LISP Functions. . 381

Writing a Simple LISP Program. . 382
Why Write a Program?. . 382

The Id Command. . 382
The Plan of Attack. . 382

Obtaining the Coordinates. 382
Placing the Text. . 384
Putting It Together. . 385

Adding to the Simple LISP Program. . 385
Conquering Feature Bloat. . 386

Wishlist Item #1: Naming the Program. . 386
Defining the Function - defun. . 386
Naming the Function - C:. . 386
Local and Global Variables - /. . 387
Wishlist Item #2: Saving the Program . . 387
Wishlist Item #3: Automatically Loading the Program. 387
Wishlist #4: Using Car and Cdr. . 388

Saving Data to Files. . 391
The Three Steps. . 391

Step 1: Open the File. . 391
Step 2: Write Data to the File . . 392
Step 3: Close the File. . 392

Putting It Together. . 393
Wishlist #5: Layers. . 393
Wishlist #6: Text Style. . 394

Tips in Using LISP. . 394
Tip #1. Use an ASCII Text Editor.. . 394
Tip #2: Loading LSP Code into BricsCAD. . 394
Tip #3: Toggling System Variables . . 395
Tip #4: Be Neat and Tidy.. . 395
Tip #5: UPPER vs. lowercase. . 396
Tip # 6: Quotation Marks as Quotation Marks. . 396
Tip #7: Tabs and Quotation Marks. . 397

xx    Customizing BricsCAD V20

22.  Designing Dialog Boxes with DCL. 399
A QUICK HISTORY OF DCL. . 400

What Dialog Boxes Are Made Of. . 402
How DCL Operates . . 402

Your First DCL File. . 402
DCL Programming Structure. . 403

Start Dialog Box Definition . . 403
QUICK SUMMARY OF DCL METACHARACTERS. . 404
Dialog Box Title. . 404
OK Button. . 404
The Default Tile. . 405

Testing DCL Code. . 405
LISP CODE TO LOAD AND RUN DIALOG BOXES. . 406

Displaying Data from System Variables . . 408
Adding the Complimentary LISP Code. . 410
Clustering Text. . 410

Supplying the Variable Text. . 411
Leaving Room for Variable Text. . 413

Fixing the Button Width . . 413
Centering the Button . . 413

Testing the Dialog Box. . 414
Defining the Command . . 414

Examples of DCL Tiles. . 416
Buttons. . 416

Making Buttons Work. . 417
Check Boxes. . 419
Radio Buttons . . 421

Clusters. . 424
Columns and Rows . . 424
Boxed Row. . 425
Boxed Row with Label. . 426
Special Tiles for Radio Buttons . . 426

Debugging DCL. . 427
Dcl_Settings. . 427
DCL Error Messages. . 427

Semantic error(s) is DCL file. . 427
Dialog has neither an OK nor a CANCEL button . . 427
Error in dialog file "filename.dcl", line n . . 428

	 Table of Contents    xxi

Dialog too large to fit on screen. . 428
Additional Resources . . 428

23.  Dabbling in VBA . 431
QUICK SUMMARY OF VBA PROGRAM COMPONENTS. . 432
QUICK SUMMARY OF VBA COMMANDS IN BRICSCAD. . 432

Introduction to VBA. . 433
Accessing VBA Programs. . 433

Sending Commands . . 433
EMBEDDED OR EXTERNAL. . 434

Writing and Running VBA Routines . . 435
Displaying Messages . . 437

Constructing Dialog Boxes. . 438
BricsCAD V20 Automation Object Model . . 440

Object-Oriented Programming. . 441
Common Object Model. . 441
Object Browser . . 441
Line Entity. . 443

Properties. . 443
Methods . . 444
Events . . 444

Dialog Box with Code. . 444
Designing the Dialog Box . . 445
Adding the Code. . 450

Clicking Cancel . . 450
QUICK SUMMARY OF VBA DATA TYPES. . 451
QUICK SUMMARY OF VBA DATA TYPE RETURN VALUES. 451

LastInput.Dvb . . 452
QUICK SUMMARY OF VBA STRING MANIPULATION. . 452

Conversion Routines. . 454
PointToString Conversion Function. . 454

Private Function PointToString(vIn As Variant) As String. 455
QUICK SUMMARY OF VBA PREDEFINED CONSTANTS. . 455
Dim sPt As String: sPt = vbNullString. . 456
Dim iPrecision As Integer. . 456
iPrecision = ThisDrawing.GetVariable("LUPREC") . . 456

xxii    Customizing BricsCAD V20

If VarType(vIn) > vbArray Then. . 456
sPt = StringFromValueFixedDecimal(vIn(0), iPrecision) & ", " 457
sPt = sPt & StringFromValueFixedDecimal(vIn(1), iPrecision) & ", " 457
sPt = sPt & StringFromValueFixedDecimal(vIn(2), iPrecision). 458
End If. . 458
PointToString = sPt. . 458
End Function . . 458

StringToPoint Conversion Function. . 458
Dim sCoords() As String: sCoords = Strings.Split(sIn, ","). 459
If UBound(sCoords) = 0 Then. . 459
tmpPt(0) = Val(sCoords(0)). . 459

Loading and Running LastInput.Dvb. . 459
QUICK SUMMARY OF VBA VARIABLE DECLARATIONS. . 460

	 Table of Contents    xxiii

Part V — Appendices

A.  Command Summary. 463
B.  Summary of Variables & Settings. 489
C.  Concise DCL Reference. 515

QUICK REFERENCE OF DCL TILE NAMES. . 516
QUICK REFERENCE OF DCL ATTRIBUTES. . 518
Exiting Dialog Boxes. . 519
QUICK REFERENCE OF LISP FUNCTIONS
FOR DIALOG BOXES. . 520
QUICK REFERENCE OF DIALOG BOXES DISPLAYED
BY LISP FUNCTIONS. . 520
SUMMARY OF TILE REFERENCES. . 522
Multiple Radio Buttons. . 527
Multiple_Select. . 536
Errtile. . 544
Value and Mnemonic . . 546

LISP Functions for Dialog Boxes. . 550
Dialog Boxes Displayed by LISP Functions. . 560

Alert. . 560
Help). . 560
Acad_HelpDlg. . 560
AcadColorDlg. . 560
Acad_TrueColorDlg . . 560
InitDia. . 561

D.  Concise LISP Reference. 563
LISP Function Summary . . 564

xxiv    Customizing BricsCAD V20

Notes

Customizing the
BricsCAD Environment

PART I

Notes

If you are a messy sketcher like me, then you appreciate how computer software makes
your work neater. For some drafters, that’s what BricsCAD amounts to: a neater drafting machine.

The real power behind CAD (computer-aided design) is, however, its ability to be customized to
the way you work. Customize is jargon for letting CAD do some of the drafting for you. This ranges
from employing line patterns that are specific to your discipline to generating 3D staircases to fit
between two floors — and more.

The benefit? You get your work done in less time, or, if you are a free-lancer, you get more work
done in the same time.

The drawback? Customizing takes a bit of time:

ÐÐ You need time to learn how to customize BricsCAD — that’s what this tutorial book is all about

ÐÐ Then you need more time to create the customization

Time isn’t something most professionals have a lot of. I sometimes find myself doing repetitive
editing under the false belief that it would take longer to write (and debug) a macro for automating
the task than doing it by hand repetitively. So, I have this rule-of-thumb:

Write a macro (automation) when the same action is repeated more than three times.

There lies the responsibility of programmers to make automation easier for the end-user. Still, the
time you invest in automation makes you a more productive BricsCAD user, even in the short run.

Introduction to
How to Customize

BricsCAD

CHAPTER 1

4    Customizing BricsCAD V20

The information in this reference applies equally to BricsCAD running on Linux, MacOS, and Win-
dows. When there are differences from Windows, the Linux and MacOS portions are indicated by
gray colored text.

The Many Ways to Customizing

By my count, there are more than two dozen ways by which to customize BricsCAD. Some of these
methods depend on the edition of BricsCAD installed on your computer: the Pro and Platinum edi-
tions provide more options than does the Classic edition.

Here I list the customization tasks supported by BricsCAD in alphabetical order, along with related
three-letter file extensions. Those covered by this book are highlighted in blue:

BRX/TX	 BricsCAD and Teigha runtime extensions, similar to AutoCAD’s ARX
	 Customizing the environment through command-line switches and other settings 		 Chapter 3
CUI	 User interface elements like ribbon, LookFrom widget, and drawing tabs 			 Chapter 4
DCL	 Dialog Control Language for customizable dialog boxes 				 Chapter 22
DWG	 DraWinG for storing drawings and creating custom symbols — see Inside BricsCAD
DXF	 Drawing Interchange Format
	 Field text									 Chapter 19
FMP	 Font Mapping 								 Chapters 2 and 18
PGP	 Aliases and shell commands 							 Chapter 10
CUI	 Customizable keystrokes, buttons, menus, toolbars, and ribbon 			 Chapters 5 - 14
LIN	 Customizable simple and complex linetypes 					 Chapter 16
LSP	 List processing language, similar to AutoLISP 					 Chapter 21
OLE	 Object linking and embedding (not available in Linux or MacOS)
PAT	 Hatch patterns 								 Chapter 17
	 Quad cursor								 Chapter 12
	 Rollover tooltips								 Chapter 13
SCR	 Script files 								 Chapter 20
SDS	 Solutions Development System, similar to AutoCAD’s ADS (SDS and ADS are deprecated*)
SHP,SHX	 Shapes and customizable text fonts** 						 Chapter 18
SLD	 Slides
TIP	 Tip of the day ***
	 Variables, Settings dialog box, and SetVar command 				 Chapter 2
VBA	 Visual Basic for Applications 							 Chapter 23

* Deprecated is a programmer’s term that means, yes, SDS is still in BricsCAD, but it is so old that Bricsys recommends you use BRX instead.

** BricsCAD cannot compile .shp files into .shx. Sorry!

** Tip of the Day was removed from BricsCAD V15. Sorry, sorry!

Some methods of customization are designed for end-users, such as modifying toolbar macros,
menus, and LISP routines, all of which you learn about in this tutorial book. Others are meant for
professional programmers, such as BRX/TX and VBA.

Between the two levels, there are many other customization possibilities. For instance, the coding
for hatch patterns is hard to figure out, but some enthusiastic users enjoy tinkering with them. You
learn about all these, as well.

	   1  Introduction to Customizing BricsCAD    5

WHICH CUSTOMIZATION DO YOU USE?
That said, you need to make some decisions along the way. As you draft with BricsCAD, make a men-
tal or written record of your work. In particular, you should chronicle repetitive drafting tasks,
because these are prime candidates for customization. As a pioneer in the CAD world emphasized,
“You should never have to draw the same line twice.” (In practice, we do, of course.)

Next, decide which of BricsCAD’s customization possibilities apply to the repetitive tasks you
uncovered. Some solutions are obvious, such as writing .lin files for custom line patterns. Others
are less obvious: to draw that 3D staircase, should you use a script file? (Perhaps.) A LISP routine?
(Yes.) Or a menu macro? (Maybe.)

For these reasons, it’s good to become familiar with most of BricsCAD’s customization possibili-
ties — even if you rarely use most of them. This way you craft a solution employing the best tools.
You will know when to give the job over to a professional programmer, yet maintain intelligent
oversight of the result.

A third solution is to learn about add-on programs available from amateur and professional program-
mers. Bricsys has an entire portion of its Web site dedicated to add-ons that works with BricsCAD at
https://www.bricsys.com/common/applications.

Applications that run on BricsCAD from third-party developers

As well, you may find utilities written for AutoCAD may well work in BricsCAD.

The bulk of the add-ons were written by programmers to solve their own problems with CAD. By
knowing how to customize BricsCAD, you can modify their routines to suit your needs, which is a
lot easier than writing it from scratch.

6    Customizing BricsCAD V20

VERSIONS OF BRICSCAD
There are several versions of BricsCAD, and this ebook is for all of them:

ÐÐ BricsCAD Classic — handles nearly all of the customizations listed in this book; does not support VBA pro-
gramming (found in this book), as well as COM, BRX, and .Net (not in this book)

ÐÐ BricsCAD Pro — supports all of the customizations described by this ebook, and handles most APIs provided
by Bricsys

ÐÐ BricsCAD Platinum — identical to Pro, as far as this book is concerned

ÐÐ BricsCAD BIM and BricsCAD Mechanical — identical to Pro, as far as this book is concerned

ÐÐ BricsCAD Ultimate — identical to Pro, as far as this book is concerned

ÐÐ BricsCAD Shape is a free 3D design program that has limited customization ability (not in this book)

See this Web page for tables that list the differences between the three primary editions:
https://www.bricsys.com/en_INTL/bricscad/compare/. The image below shows a small part of
the comparison table.

Comparing the three editions of BricsCAD

The free 30-day version of BricsCAD is the Ultimate edition, which consists of the Platimum ver-
sion plus the BIM and Mechanical add-ons. It is handy for trying out all of the exercises in this
book. Download your copy from https://www.bricsys.com/en_INTL/.

	   1  Introduction to Customizing BricsCAD    7

61 Tips for BricsCAD Users

tip 1. To change menus, ribbon, and other interface elements, enter the Customize command.
You can modify the currently active customization file, or load another CUI file (for example, from
AutoCAD). See Chapter 5.

tip 2. BricsCAD groups all settings variables in a single dialog box, the Settings dialog box. Enter
the Settings command to open the dialog box. See Chapter 2.

tip 3. Watch BricsCAD tutorial movies at https://lessons.bricsys.com/. Some of the ones dealing
with customization were produced by the author of this book, Ralph Grabowski.

Web page listing tutorial videos for BricsCAD

tip 4. To turn the display of the command bar on and off, enter the CommandLine command
or press Ctrl+9. You can dock the command bar at the top or bottom of the BricsCAD application
window or place it anywhere on any monitor attached to your computer. Hold down the Ctrl key
(Cmd key on Macs) to prevent the command bar from docking.

Docked command bar

8    Customizing BricsCAD V20

When the command bar is off, then the prompts are displayed by the status bar, and in the drawing
area. (See figures below)

 

Left: Command prompt displayed on the status bar; right: ...and in the drawing area

tip 5. When you launch a command, a Prompt menu displays all options current for
the command. (See figure at left.) Use the mouse to select an option in the prompt
menu.

The display of the prompt menu is controlled through the PromptMenu variable. In
the Settings dialog box under Program Options Display, choose Prompt Menu, and
then select a location for the prompt menus to display. Choose ‘Don’t display prompt
menu’ to suppress the display of prompt menus.

tip 6. When you hover the cursor over a tool button, a tooltip is displayed, from which you can
read a brief explanation of the tool’s purpose. In addition, a line of help text is displayed on the
status bar at the bottom of the BricsCAD application window.

Tooltip explaining the function of a button on the toolbar

tip 7. When you press F1 while a command is active, then BricsCAD displays help spe-
cific to that command. You can also access the complete command reference online from
https://help.bricsys.com/hc/en-us/categories/360000679494-Command-Reference

tip 8. When you are familiar with typing AutoCAD commands and aliases at the command prompt,
you can use exactly the same names in BricsCAD. These are called “aliases,” and you can create,
edit, and delete them with the Customize command.

tip 9. The best way to open additional toolbars is to right-click a toolbar or the ribbon, and then
click on Toolbar > BricsCAD to see a list of all available toolbars. (See figure.) Click on the name
of the toolbar you want to open. Toolbars that are already open have a check mark next to them.
When you click a toolbar that is open, it closes.

tip 10. User interface elements, such as toolbars, ribbon, the command bar, and the Properties
panel, can be placed anywhere on the screen, including on a second monitor. Press and hold the
left mouse button to drag them to another location.

To prevent a toolbar or panel from docking against the edge of the BricsCAD window, press and
hold the Ctrl key (Cmd key on MacOS) when positioning the item.

The LockUI variable determines if toolbars and panels are to be locked into place.

	   1  Introduction to Customizing BricsCAD    9

Accessing toolbars in BricsCAD

tip 11. To change the color of the screen background, follow these steps:

1.	 Enter the Settings command

2.	 In the search field, enter “background color” and then press Enter

3.	 Select the color you want for the background

Alternatively, enter variable names at the command prompts. For instance:

	 BkgColor directly controls the background of the model space background

	 BkgColorPs directly controls the background of the paper space background

10    Customizing BricsCAD V20

tip 12. Use the tools on the Inquiry toolbar to measure the distance between two points, to find
the area of closed entity, or to read the x,y,z coordinates of a point.

From left to right: Distance, Area, Mass Properties, ID Coordinates | List Entity Data, Drawing Status, Time Variables

tip 13. To choose an option quickly during a command, just type the capitalized letter of the
option’s name. When drawing a polyline, for instance, type a to start drawing arc segments and
type l to switch back to drawing line segments.
: PLINE
Start of polyline:
Set next point or [draw Arcs/Distance/Halfwidth/Width]:a
Set end of arc or [draw Lines/Angle/CEnter/Direction/Halfwidth/Radius/Second point/Width]:l
Set next point or [draw Arcs/Distance/Halfwidth/Width]:

(new in v20) You can use your cursor to pick the name of the option directly in command bar area.

Selecting a command option in the command bar with the cursor

tip 14. BricsCAD’s drawing elements, such as layers, linetypes, text styles, dimension styles,
and blocks, can be copied between open drawings using the Drawing Explorer. Follow these steps:

1.	 Enter the Explorer command, and then choose the element you want to copy, such as “Linetypes”

2.	 Right-click “Linetypes,” and then choose Copy

3.	 Switch to the other drawing, and then paste the item

Pasting a linetype into another drawing

tip 15. An alias for a command can be a single letter, such as L for “Line,” and it can be a different
name, such as axis for “infline”. To edit existing aliases or add new aliases, enter the Customize
command, and then select Command Aliases tab on the Customize dialog.

	   1  Introduction to Customizing BricsCAD    11

tip 16. To recall the previous selection set for the next command, choose Previous Selection in
the Prompt bar or type p in the command bar to, for instance, move a previously copied selection set.

tip 17. You can use any drawing you want as the template for future drawings. Template drawings
can contain blocks, borders, and any other geometry, in addition to all your preferred settings. To
set the default template drawing in the Settings dialog, go to Program Options | Files | Templates
| Template.

tip 18. Using entity snaps, you will draw faster and more accurately by snapping to their geom-
etry, such as end points and mid points of lines. To quickly set and unset specific snap types, click a
button on the Entity Snaps toolbar. The recessed button (or blue a border) indicates that the entity
snap is active. (See figure below.) Click again to deactivate.

Toggling entity snaps

tip 19. The Properties panel performs three tasks:

Properties being reported for a polyline entity

•	 When nothing is selected, then it sets the working properties for entities (color, layer, and so on)

•	 When one entity is selected, it edits the properties of the entity

•	 When two or more entities are selected, it edits the shared properties of them

To open the Properties panel, enter the Properties command or else press Ctrl+1.

12    Customizing BricsCAD V20

tip 20. You can resize the height of any panel by dragging its top edge (when docked at the bot-
tom) or its bottom edge (when docked at the top).

tip 21. In each drawing you can define your own coordinate systems (UCS), which can then be
saved and recalled as you need them. This is useful when you need to draw at angles other than
the regular orthographic x,y-plane. To have BricsCAD automatically place the working place, turn
on DUCS (dynamic UCS) on the status bar.

(new in V20) BricsCAD can also use DUCS when working with most 2D entities and dimensions.

Tip 22. Documents from other programs (e.g. text document and spreadsheets) can be dragged
from the Windows Explorer window into your BricsCAD drawings (Windows only). To see the
options available, drag the file from Explorer into BricsCAD using the right mouse button. In this
case, the following dialog box is displayed:

Dialog box displayed by right-button dragging into BricsCAD

Double-clicking the inserted document opens the source application.

tip 23. To toggle the display of the status bar, enter the StatBar command, or else press
Shift+F3.

tip 24. When trying to select one entity from many overlapping ones, you can cycle through possi-
ble snap points by pressing the Tab key repeatedly. The entity that is highlighted is the one selected.

tip 25. Polylines consist of a chain of line and/or arc segments. Polylines have properties that
ordinary lines lack, such as width, elevation and thickness. Draw polylines with the PLine command.

tip 26. In the Drawing Explorer, you can see a thumbnail image of all blocks in the drawing. To
insert the block in the current drawing, click the Insert button.

To preset parameters for blocks being inserted, right-click any block and then choose Options.

Presetting otpions for inserting blocks

	   1  Introduction to Customizing BricsCAD    13

tip 27. Use the Follow option if you want to continue drawing lines, arcs, or polylines from the
last point and in the same tangent direction.

tip 28. To see the length and angle of the current line segment while drawing lines or polylines,
right click the coordinates field in the status bar and then choose Relative from the context menu.

Turning on relative coordinates

tip 29. Use the Match tool (the ‘brush’) to apply the properties of one entity, such as color,
linetype, and thickness, to other entities.

tip 30. Click ORTHO in the status bar or press F8 to toggle the orthogonal setting. Holding down
the Shift key while you draw temporarily reverses the ortho setting — on or off.

tip 31. Double-click the left end of the status bar to toggle the display of the command bar.

tip 32. Choose New Wizard from the B menu, and then choose the Use a Wizard option to cre-
ate a new drawing from scratch. The new drawing wizard guides you through all the basic drawing
settings.

Starting a new drawing with the assistance of a wizard

tip 33. BricsCAD provides dynamic view control using the mouse:

Mouse motion				 BricsCAD Action			

Hold down middle button			 Real-time pan
Roll middle button (roller wheel)		 Real-time zoom
Hold down Shift key with middle button	 Real-time orbit (3D rotation)

14    Customizing BricsCAD V20

tip 34. The Explode command breaks complex entities, such as blocks and polylines, into their
component pieces.

tip 35. Purging unused definitions might reduce the size of your drawings dramatically. Enter
the Purge command, then choose All to purge all unused definitions. Purging can also be done in
the Drawing Explorer with the Purge button.

tip 36. The CENter entity snap recognizes the center point of closed polylines — as well as circles
and arcs. This works for even non-circular curves.

tip 37. Many settings can be changed by clicking or right-clicking on each of the fields in the
status bar at the bottom of the window.

Right-clicking a status bar item to access options

Click the small down arrow at the right hand side of the status bar to control the display of
the various fields in the status bar.

Toggling what gets displayed by the status bar

	   1  Introduction to Customizing BricsCAD    15

tip 38. To copy or move entities between drawings, start the command in the source drawing,
then switch to the target drawing when prompted for the displacement point. Press and hold the
Ctrl key (Cmd key on Macs), then hit the Tab key to cycle through all open drawings.

Tip 39. The Bisect option of the Ray command bisects angles, lines, arcs, and polylines:

ÐÐ Vertex option bisects an angle

ÐÐ Entity option draws the ray perpendicular to the midpoint of the entity

tip 40. The Save Block tool in the Drawing Explorer saves the selected block to a separate
drawing, which can then be inserted into other drawings.

tip 41. In the Drawing Explorer, you can click in the Current column to make an item current.
For example, to set a layer as the current layer, click in the Current column of that layer. A blue
dot appears in this column to mark the layer as current.

tip 42.  Use the Mail command to compose an email with the current drawing as an attachment.

tip 43. How to turn an arc into a circle: use the Circle command’s turn Arc into circle option.

tip 44. Scroll bars allow to pan horizontally and vertically. To toggle the display of the scroll bars,
enter the ScrollBar command or press Shift+F4.

tip 45. Use the Join command to turn several entities with common endpoints into a single one:
lines, polylines, 3D polylines, circular and elliptical arcs, splines, and helixes.

tip 46. How to create keyboard shortcuts: enter the Customize command, and then choose the
Keyboard tab. You can use any key on the keyboard and any function key, together combinations
with Shift, Alt, and Ctrl. See Chapter 10 more information.

Customizing keyboard shortcuts

16    Customizing BricsCAD V20

Linux and Windows versions of BricsCAD use the same Cmd and Alt keys for shortcuts. In the MacOS
version, Ctrl and Alt are not used; instead, mentally map them to the Mac’s Cmd and Option keys:

Linux, Windows		 MacOS		

	 Ctrl		 Cmd
	 Alt		 Options

tip 47. The Plan command restores the plan view of the current coordinate system, as well as in
the World Coordinate System (WCS) or any saved User Coordinate System (UCS). From the View
menu, choose Plan View.

If the UcsFollow variable is on, plan view is restored automatically when the coordinate system
changes.

tip 48. Select an entity, then type List in the command bar to display the information about the
selected entity in the Prompt History window.

List command displaying its report in the Prompt History window

tip 49. Block attribute data is exported to external data files with the DataExtraction command,
whcih can then be imported into spreadsheets and database programs — as well as brought back
into the drawing as a table using the Table command’s From Data option.

tip 50. Select the Explode option of the Insert Block dialog to break a block into its component
pieces upon insertion. Use the BEdit command to edit blocks in the block editor environment, and
the RefEdit command to edit externally-referenced drawings in the reference editor.

tip 51. The QSelect command creates a selection set using properties, such as such as layer,
color, and/or entity type.

tip 52. BricsCAD automatically saves your work at a specified time interval. In the Settings dia-
log, under Program Options | Open and Save, choose Save time interval, then specify the time
interval in minutes.

In the Settings dialog, under Program Options | Files you can specify the folder in which to store
automatic saves.

	   1  Introduction to Customizing BricsCAD    17

tip 53. You can change the pattern style of an existing hatch in the Properties panel:

1.	 Select the hatch

2.	 Choose Pattern name in the Properties panel

3.	 Click the Browse button to select a different hatch pattern in the Hatch Pattern palette

Changing a hatch pattern quickly

tip 54. You can easily find any variable or program setting using the search field in the Settings
dialog.

Searching for variable names in the Settings dialog box

To open the Settings dialog, enter the Settings command. Click the binoculars button to define the
search target: variable names, titles, and/or help text.

tip 55. To open a drawing in BricsCAD quickly, drag it from File Explorer (Finder on Macs) to
the title bar of BricsCAD.

To insert the drawing as a block, drag it instead into the drawing area.

tip 56. To get a count of entities in the drawing quickly, enter Ctrl+A to select all entities, and
then cast a glance at the Properties panel’s droplist.

Counting the types of entities in the drawing

18    Customizing BricsCAD V20

tip 57. To make a layer current by selecting an entity on that layer, click the Set Layer by
Entity tool button on the Layer toolbar.

tip 58. To override the currently active entity snaps while you are drawing, press and hold the
Shift key, then right-click and choose an entity snap from the context menu, which will then be
used to specify the next point.

tip 59: To view the contents of each layer individually, open the Drawing Explorer to the Layers
node, and then click on each layer name.

tip 60: To restore all of the user interface to its default state, click the Revert to defaults button
in the Customize dialog box.

tip 61: To learn more about customization, read this book!

For Further Reference

This book provides much documentation and many tutorials for customizing most aspects of Bric-
sCAD, but even at 600 pages it doesn’t cover everything. Here are additional references:

REFERENCE AND TUTORIAL BOOKS
Bricsys offers these titles for learning how to operate BricsCAD. Each is a PDF file that you download
for free from https://help.bricsys.com/hc/en-us. and then scroll down to “Download Free Books.”

	   1  Introduction to Customizing BricsCAD    19

	 Inside BricsCAD — teaches newcomers how to draft with BricsCAD through many step-by-step tutorials.

Nearly 400 color pages.

	 BricsCAD for AutoCAD Users — clearly explains the similarities and differences between BricsCAD and Auto-

CAD. Over 300 color pages.

	 Customizing BricsCAD — additional copies of this book are available from Bricsys.

BRICSCAD API REFERENCES
Bricsys provides online references for programmers at
https://bricsys.com/bricscad/help/en_US/V20/DevRef/index.html. The Web site provides
information on the following APIs:

ÐÐ LISP (LISt Processing)

ÐÐ Additional LISP functions, such as VLA, VLAX, and VLE

ÐÐ DCL (Dialog Control Language) — incomplete

ÐÐ DIESEL (Direct Interpretively Evaluated String Expression Language)

ÐÐ VBA (Visual Basic for Applications) — incomplete

ÐÐ COM (Component Object Model)

ÐÐ BRX (BricsCAD Runtime eXtension) and TX (Teigha eXtension; formerly DRX) — incomplete

ÐÐ .Net

ÐÐ SDS (Softdesk Development System; deprecated)

20    Customizing BricsCAD V20

DWG, DXF, AND DWF REFERENCES
The Open Design Alliance provides the specifications of the DWG file format, as they under-
stand it to be. Covers Release 13 through 2013. Download in PDF format (free; 262 pages) from
https://www.opendesign.com/files/guestdownloads/OpenDesign_Specification_for_.dwg_files.pdf
Autodesk does not document DWG.

Autodesk provides references for the DXF format (drawing interchange format). Covers Release
2012. Download in PDF format (free; 270 pages) from
http://images.autodesk.com/adsk/files/autocad_2012_pdf_dxf-reference_enu.pdf

Adjusting BricsCAD’s
Settings

CHAPTER SUMMARY

The following topics are covered by this chapter:

•	 Touring the Settings dialog box

•	 Understanding system variables and preferences

•	 For the complete list of variables and preferences, see Appendix A

•	 Additional system variables and preferences

CHAPTER 2

The Settings dialog box is BricsCAD’s control central. This is where you make adjustments
to the settings of over 1.000 variables. BricsCAD uses variables (settings) to control, change, and
remember the states of drawings, dimensions, the user interface, and the program itself.

For instance, through this dialog box you change the background color of the drawing area, or
specify the name and path for the default template file. When you want to change the default radius
of fillets, you select the Settings option of the Fillet command: this action opens the Settings dialog
box at the Chamfer/Fillet section: you are changing the value of variable FilletRad.

22    Customizing BricsCAD V20

Many BricsCAD variables have names that are the same as in AutoCAD and IntelliCAD, such as
FilletRad. But BricsCAD also has it own set of unique variables that it names “preferences,” such
as BkgColor to set the background color of the drawing area. BricsCAD-only variable names are
tagged in the Settings dialog box.

Certain commands take you directly to the related section of the Settings dialog box, such as the
DdPMode for setting the display style of points. Other commands have a Settings or Options op-
tion that does the same thing, such as the Fillet command’s Settings option that I mentioned earlier.

A handy way to get to some settings is by right-clicking a button on the status bar, and then choos-
ing Settings from the shortcut menu. For example, you can change the settings of grid, snap, and
Quad in this way.

Touring the Settings Dialog Box

To access the dialog box, enter the Settings command. When the dialog box appears, notice that it
sorts variables into groups:

ÐÐ Drawing — settings affecting how drawings are created

ÐÐ Dimensions — settings affecting the styles of dimensions

ÐÐ Program Options — settings affecting how the program looks and operates

Plus, there additional settings for the optional add-ons:

ÐÐ Compare — setting for 3D model comparison, part of the Mechanical add-on

ÐÐ Sheet Metal — settings for sheet metal design, part of the Mechanical add-on

ÐÐ Communicator — settings for file translation, part of the Communicator add-on

ÐÐ Standard Parts — settings for sheet metal design, part of the Mechanical add-on

ÐÐ BIM — settings for building information modeling, part of the BIM add-on

Settings dialog box

———

First, we examine the functions of the Settings dialog box’s toolbar, and then we tackle the body of
the dialog box.

	 2  Adjusting Settings in BricsCAD    23

SETTINGS DIALOG BOX: TOOLBAR
The toolbar is at the top of the Settings dialog box. It changes the way the Settings dialog box pres-
ents information and accesses utility commands.

Toolbar in the Settings dialog box

Let’s take a look at the functions of the toolbar buttons, beginning at the left end.

Categorized/Alphabetic Sorting
 You can search for settings by browsing through categories, or you can look through them

alphabetically, or you can use the search field. I tend to use the search field, which I describe later.

The first two buttons on the toolbar switch the dialog box’s listing of variables between Categorized
and Alphabetic modes:

ÐÐ Categorized mode is illustrated on the facing page, and lists variables in related groups

ÐÐ Alphabetic mode is shown below, and lists them alphabetically by description (rather than by name)

Because BricsCAD lists variables alphabetically by their description (instead of by their actual
names), “2D closed B-spline curve import mode” is the first one on the list, even though its variable
name is DgnImp2dCloseBSpline.

Settings dialog box displaying settings in alphabetical order

24    Customizing BricsCAD V20

Show Differences
 The Show Differences button clears the dialog box of all settings, except for those whose val-
ues have changed from the initial (default) values. Make a change to a variable, and it will show up
here. This is handy for figuring out what might have changed.

Settings dialog box showing differences from initial values

We generally don’t know what the default value of a variable is, and so BricsCAD helps us out here.
To change a value back to the default, right-click its name, and then choose Restore Default Value
from the shortcut menu.

Changing a variable back to its default value

Notice that the variables with changes are shown in blue. The same happens in the regular dialog
box. You can change this color and the kinds of variables listed, as described next.

Dialog Configuration
The Dialog Configurations button lets you search for variables, configure what is searched, and
how the differences are shown. When you click the button, then BricsCAD displays this dialog box:

BricsCAD searches for the values of variables when the In variable values option is turned on.

	 2  Adjusting Settings in BricsCAD    25

Search. The Search options are useful in limiting where BricsCAD performs its searches. I tend to
leave In Variable Names and In Variables Titles turned on, with the others turned off.

While you can use the Find What field that’s right here in this sub-dialog box, it doesn’t display
color change or do real-time searches, and so I don’t find it useful. Use the toolbar’s Search field
instead, as described next.

Modified Settings. The Modified Settings section lets you change the color of the changed vari-
ables, as well as to determine which variables are displayed by the Show Differences dialog box.

ÐÐ Display All — lists all variables whose values have changed

ÐÐ Display Settings Stored in Drawing — lists only those variables that affect the current drawing

ÐÐ Display Settings Not Stored in Drawing — lists those that affect all drawings

Finding Variables
 The best item in the toolbar is the real-time search field. It lets you

directly access variables when you know the first few letters of their names or descriptions. I find
this the easiest way to navigate the 900+ entries in the dialog box.

As you type into the search field, BricsCAD immediately jumps to the first item that matches the
letters. For instance, when entering “lastpoint,” the following occurs:

Type l — focus jumps to Insertion Unit, because the description contains the letter ‘l’

Type la — focus jumps to Unit Mode, because ‘la’ is in “displayed” in the description

Type las — focus jumps to Text Angle, because of ‘las’ in “last” of the description

Type lastp — focus stays in Last Point, because of ‘lastp’ in “lastpoint” variable name

If the LastPoint variable is not the one that I want, then I click the down arrow to move to the
next instance of a candidate that matches “lastp.” Continuing with this example, when I click
the focus jumps to LastPrompt.

Sometimes the color of the search field changes. The colors report the status of the search term
that you entered:

Snow — two or more words match the search phrase

Lime — only one word matches the search phrase, or a repeated search has returned to the start

Tangerine — no words match the search phrase

26    Customizing BricsCAD V20

Export Settings
 The last button is Export and is saves all settings and values to a CSV file, short for “comma-

separated values.” The file contains the names of variables in true alphabetical order, their current
values, and other information.

Each value is separated by a comma, as shown by this sample:
AUTOSNAP,reg,int,RTSHORT,63,63,,AutoSnap

AttractionDistance,prf,int,RTNONE,3,3,,Grips attraction distance

AutoTrackingVecColor,prf,int,RTNONE,171,171,,Auto tracking vector color

AutosaveChecksOnlyFirstBitDBMOD,prf,bool,RTNONE,1,1,,Ignore all but first bit of DBMOD for autosave

BACKZ,drw,real,RTREAL,0,0,,Back clipping plane offset

TIP  Fields are separated by commas. Because coordinates normally use commas — such as 2,3,4 — in
this CSV file the commas are replaced by semi-colons, such as 2;3;4.

The meaning of each field is explained by the table below using the example of AutoSnap.
AUTOSNAP,reg,int,RTSHORT,63,63,,AutoSnap

Data		 Example 		 Field		 Options		 Meaning			

Name		 AUTOSNAP	 Variable name					
		 				 UPPERCASE	 System variable		
	
						 MixedCase	 Unique to BricsCAD 		
	

Save mode	 reg 		 Location where the value is saved				
						 not		 Not saved
						 prf		 In BricsCAD preferences
						 reg		 In the Windows registry
						 drw		 In the drawing

			

Save type			 Type of value					
		 0				 bool		 Boolean (a toggle, such as 0 or 1)
		 4				 int		 Integer (no decimal places)
		 10000000 				 long		 Long integer (greater than 216)	
		 0.5;0.5 				 pt2d		 2D point (x,y)		
		 1;0;0 				 pt3d		 3D point (x,y,z)		
		 25.4 				 real		 Real number (with decimal places)
		 ANSI31 				 str		 Strings (text)		

	

Restype				 Numerical type of value
		 4 				 RTSHORT		 Short integer (same as integer)	
		 10000000 				 RTLONG		 Long integer		
		 0.5;0.5 				 RTPOINT		 2D and 3D point		
		 25.4 				 RTREAL		 Real number		
		 ANSI31 				 RTSTR		 String			
						 RTNONE		 Stored in preferences	

Default value	 63		 Specifies the default value, as found in the default template file
Current value	 63		 Specifies the current value
Status				 Reports when the value is read-only (cannot be changed by the user)
Title		 AutoSnap		 Briefly describes the purpose of the variable

	 2  Adjusting Settings in BricsCAD    27

As a file format, CSV is “universal,”because it can be imported easily into spreadsheets and data-
bases. These programs use the comma to identify where to separate the fields into columns. In a
word processor, I use the Find and Replace command to change commas to tabs.

Exporting Variables
To export the settings data, follow these steps:

1.	 Click the Export button. Notice the Export Settings dialog box.

Saving variables to a .csv file

2.	 Choose a folder in which to store the file. You can change the file’s name, but make sure you leave the exten-

sion set to “.csv”.

3.	 Click Save.

The data is exported from BricsCAD in alphabetical order, whether or not the current setting is
Alphabetical or Categorized. To open the exported file in an application, such as the Calc spread-
sheet program from LibreOffice, continue with these steps:

1.	 Start LibreOffice. (You can download this software free of charge from http://www.libreoffice.org. It is avail-

able for Windows, Linux, and MacOS — just like BricsCAD!)

The initial LibreOffice interface

28    Customizing BricsCAD V20

2.	 From the File Manager (Finder on the Mac), drag the settings.csv file into the LibreOffice window shown above.

3.	 Notice the Text Import dialog box. It shows you how LibreOffice proposes to separate the comma-delimited

data into columns. Under Separator Options, ensure that Comma is selected, and then click OK.

Formatting imported text

4.	 Notice that the settings data appears in columns in the spreadsheet. Format and edit the text as you wish.

Settings imported successfully into a spreadsheet

ACCESSING VARIABLES AND CHANGING VALUES
To access the value of a variable, you can use the Find field described above, or else click the
node boxes to open sections. (Click nodes to collapse sections.) Notice the nodes:

To change the value of a variables, follow these steps:

1.	 Navigate to the variable you want to change.

2.	 Click on the name of the variable.

3.	 Depending on the nature of the variable, you take one of these actions to change the value:

•	 Text/numerical variable — type in a new piece of text or a new number

	 2  Adjusting Settings in BricsCAD    29

•	 Toggle variable — click a check box to turn it on (green check mark) or off (none)

•	 Option variable — select an option from a droplist

•	 Value variable — enter a new value

•	 File variable — click the Browse button to open the file dialog box

After it is changed, the variable name and its value turns to boldface — a way of alerting you to
changes. Not all variables can be changed.

Those with the “read-only” setting cannot be changed and so are shown with gray text. (See figure
below.) When you click on them, they do not react.

Variables Specific to Windows
Some preferences are specific to the Windows version of BricsCAD, such as those related to OLE.
They have no effect in Linux or Mac.OS

Changing Variables at the Command Prompt

Outside of the Settings dialog box, you can change the values of variables at the ‘ : ’ command
prompt. There are two ways to do this.

ÐÐ Enter the variable name at the command prompt just like a command name:
	 : gripblock
	 New current value for GRIPBLOCK (Off or On) <Off>: on

	 The values in the parentheses report the valid range of values, such as (Off or On); the value inside the angle

brackets report the current (default) value, such as <Off>. I find this useful for determining the range of al-

lowable values.

ÐÐ Use the SetVar command. The only advantage to this command is that it also lets you list the names of variables,
if you are unsure of the exact spelling. Here’s how to do this:

1.	 First, enter a ? (question mark) at the prompt:

	 : setvar
	 Variable name or ? <GRIPBLOCK>: ?

30    Customizing BricsCAD V20

2.	 Then, type the part of the name that you know, and use an * (asterisk) to represent the unknown part of

the name.

	 Variable(s) to list <*>: grip*

 GRIPBLOCK 0
 GRIPCOLOR 72
 GRIPDYNCOLOR 140
 GRIPHOT 240
 GRIPHOVER 150
 GRIPOBJLIMIT 100
 GRIPS 1

TIPS  To get a list of variable names and their current values, press Enter at the ‘Variable(s) to list <*>:’
prompt.
To capture the list to a file, use the LogFileOn command before entering SetVar, and then LogFileOff after-
wards. The location of the log file is given by variable LogFilePath.

(Historical note: The Settings dialog box was added with BricsCAD V8, replacing the Options dia-
log box of earlier releases.) See Appendix B for a complete list of all BricsCAD variable names and
default values in alphabetical order.

Changing BricsCAD’s
Environment

CHAPTER SUMMARY

The following topics are covered in this chapter:

•	 Starting BricsCAD

•	 Setting command line options (not available in Mac)

•	 Changing screen and other colors of the user interface

•	 Specifying support file paths

•	 Launching the user profile manager (not available in Linux or Mac)

BricsCAD allows you great flexibility in changing the way it looks and works. The first few
chapters of this book show you how to change the look of BricsCAD; later ones concentrate on
changing how it works.

This chapter tells you how to change the way in which BricsCAD starts up, as well as how to use the
Settings dialog box to change the look of BricsCAD’s user interface. For example, you can change
things like the the background color of the drawing area and the size of the cross hair cursor to
suit you.

CHAPTER 3

32    Customizing BricsCAD V20

Starting BricsCAD

You probably know about these ways to start BricsCAD:

ÐÐ Double-click the BricsCAD icon found on your computer’s desktop

ÐÐ Or, on the taskbar of most releases of Windows, click the Start button, and then select Bricsys | BricsCAD
V20 | BricsCAD or something similar

•	 In Windows 8 and Windows 10 tablet mode, click the BricsCAD icon in the Start screen.

•	 In Linux, click the Main Menu button, and then select Graphics | BricsCAD

•	 In the MacOS dock, click the Applications folder, and then select BricsCAD

ÐÐ Or, in Windows Explorer (or Linux File Browser or MacOS Finder), double-click the name of a .dwg file; this
option works only when BricsCAD is the default program assigned to .dwg files

But there are other ways to launch the program. These variations are described next.

COMMAND LINE OPTIONS
It was common knowledge in the days of the DOS and Unix operating systems that programs could
use options to start up. Windows, MaOS, and Linux hide much of what goes on behind their graphi-
cal user interfaces, and so command-line options are no longer common. They are, nevertheless,
still available, and here I show you how to use them with BricsCAD.

Normally, BricsCAD starts with a new, blank drawing. You can, however, have BricsCAD start with
a specific file by editing a target value. BricsCAD can be made to load specific drawing files — and
other kinds of files — as it starts; you just need to specify the file name to the OS (operating system)
at the command line. In a moment, I’ll tell you how to access that command line.

The following table lists the file types that can be used at the command line, and what they do
when BricsCAD starts up:

File Type	 Meaning								

.CUI		 Loads the file that customizes the user interface

.DLL		 Loads ADS/SDS or DRX/ARX programs (dynamic link libraries)

.DSD		 Plots files specified earlier by the Publish command

.DWG 		 Opens a drawing file made by BricsCAD, AutoCAD, and other CAD programs

.DWT		 Opens a template file that specifies the initial settings of new drawings

.DXF		 Opens drawing interchange format files from other CAD programs

.LSP		 Loads LISP and AutoLISP routines

.MNU		 Loads menu files from older releases of BricsCAD and AutoCAD

.SCR		 Runs a script file

.SLD		 Displays a slide file

	 3  Changing BricsCAD’s Environment    33

Here’s how to access the command line in Windows and Linux. This feature is not available on MacOS.

1.	 On the desktop of Windows or Linux, right-click the BricsCAD icon.

2.	 Notice the shortcut menu. Select Properties.

  
Left: Accessing icon properties in Windows 7... right: ...and in Linux Mint

3.	 In the Properties dialog box of Windows, select the Shortcut tab.

	 In the Properties dialog box of Linux, select the Launcher tab.

Properties dialog box in Windows

	 Notice that for Windows the default command-line text is similar to the path listed below:
	 Target	 “C:\Program Files\Bricsys\BricsCAD V20 en_US\bricscad.exe”

	 Linux is straightforward: it knows the location of programs, and so programs do not need a path.

The elements of a path , such as “C:\Program Files\Bricsys\BricsCAD V20 en_US\bricscad.exe”, have
the following meaning:

Path			 Meaning							

C:			 Name of the disk drive
\Program Files		 Name of a folder
bricscad.exe		 Name of the BricsCAD program

	 Quotation marks (" and ") are needed when there are spaces in the names of folders and programs

	 Colon (:) identifies the names of disk drives, such as C:

	 Back slashes (\) separate the names of folders. The folder names may vary, depending on where BricsCAD

was installed on your computer

34    Customizing BricsCAD V20

Linux has these differences from Windows:

•	 Linux uses forward slashes (/) to separate folder names, rather than backs lashes (\)

•	 The path starts from the home folder, not the root folder

•	 Path and file names are case-sensitive in Linux, so “Documents” is a different name from “documents”

 4.	 Here is how to start BricsCAD with a specific .dwg drawing file. The same procedure works with .dxf transla-

tion files, as well.

	 In the Properties dialog box in Windows, edit the text in the Target box by adding the text shown in color:
	 "C:\Program Files\Bricsys\BricsCAD V20 en_US\bricscad.exe" "c:\folder\file name.dwg"

	 In Linux, add the path to the drawing file to the Command box:
	 bricscad.exe "home/<login>/Documents/My Drawings/file name.dwg"

	 Replace “<login>” with the name by which you logged into your Linux computer. In my case, it is “ralphg,” so

the path looks like this:
	 bricscad.exe "home/ralphg/Documents/My Drawings/file name.dwg"

	 Notice that:

•	 The full path name to the drawing is required

•	 Separate pairs of quotation marks are needed for the names of the program and the file. (Quotation

marks are needed only when paths and file names contain spaces.)

5.	 Click OK in Windows.

	 In Linux, click Close.

6.	 Test your modification by double-clicking the BricsCAD icon. The program should start, and then open the file.

If you made an error, you will receive a complaint from a dialog box, such as this one in Linux:

Warning message from the operating system

	 Reasons for errors include the following ones:

•	 The file name was incorrectly spelled

•	 The path is incorrect or incomplete

•	 The file is missing and does not exist

•	 The quotation marks are unbalanced, with the starting or ending " missing

CATALOG OF COMMAND-LINE SWITCHES
As it starts up, BricsCAD can open a number kinds of file types, as listed by the table earlier. For
instance, after starting it could run a script, or it could plot a number of drawings automatically
in batch mode.

When it comes to file types other than drawings, however, you need to use a command-line switch
to alert BricsCAD as to the type of file. It is called a “switch” because it switches the way BricsCAD
operates; for example, the /b switch instructs BricsCAD to run a script file following start-up.

	 3  Changing BricsCAD’s Environment    35

To indicate a switch, Windows uses the forward slash (/), borrowed from DOS. Linux uses a dash
(-), borrowed from Unix. (This feature is not available on Mac.) Here is the complete list of switches
that BricsCAD accepts:

Windows		 Linux	 		 Meaning					

/b filename.scr		 -b filename.scr		 Runs an .scr script file following start up
/l 			 -l			 Suppresses the BricsCAD logo (splash screen)
/ld app.arx		 -ld app.arx		 Loads an ARx, BRx, or DRx application
/p profile.arg		 -p profile.arg		 Loads an alternate user profile
/pl plotlist.dsd		 -pl plotlist.dsd		 Plots silently in the background
/s path			 -s path	 		 Specifies alternative search paths for support files
/t path			 -t path			 Specifies the path and name of a .dwt template file

The following switches apply to Windows only; Linux does not support COM:
regserver		...			 Registers BricsCAD’s COM (common object model)
unregserver		...			 Unregisters COM
	

You can use any number of switches in a row to make multiple things happen as BricsCAD starts
up. For example, it could plot a number of drawings and then open a specific template file.

Let’s now go through a detailed description of each switch.

No Switch - Load Drawings
BricsCAD uses no switch to load one or more .dwg and/or .dxf files specified at the OS command line:

"c:\program files\bricsys\bricscad\bricscad.exe" "c:\my documents\filename.dwg" c:\dwg\filename.dxf

B Switch - Script Files
The b switch specifies the name of a .scr script file to run immediately after BricsCAD starts. The
“b” is short for batch. The switch is followed by the path and name of the script file. Here is an
example of the usage in Windows:
"c:\program files\bricsys\bricscad\bricscad.exe" /b "c:\BricsCAD\script file.scr"

See the later chapter on scripts to learn how to write your own script files.

L Switch - No Logo
The l switch suppresses the logo at startup. The “l” is short for logo. This means that the splash
screen bearing the BricsCAD name and version number does not appear. Notice that this switch
appears by itself; no path or file name is associated with it.

In Windows, it looks like this:
"c:\program files\bricsys\bricscad\bricscad.exe" /l

 In Linux, it looks like this:
bricscad.exe -l

36    Customizing BricsCAD V20

LD Switch - Application Load
The ld switch specifies the names of applications to load, specifically those written with Bricsys’s
BRx, the ODA’s DRx and Tx, or Autodesk’s ARx application programming interfaces — APIs. The
“ld” is short for load. This switch is useful when you want to load add-on programs right away as
BricsCAD starts.
"c:\program files\bricsys\bricscad\bricscad.exe" /ld "appname.brx"

S Switch - Search Support Paths
The s switch specifies alternative search paths for support files. The “s” is short for search. This
switch is useful when you want to load linetypes, patterns, and menu files provided by clients; you
don’t want to mess up your own setup, and so you place these files in their own folder, and then
point to the folder with this switch.

Notice that this switch specifies only paths, not any file names:
"c:\program files\bricsys\bricscad\bricscad.exe" /s "c:\client\support"

You can specify multiple paths by separating them with semicolons (;), like this:
"c:\program files\bricsys\bricscad\bricscad.exe" /s "c:\client1\support;c:\client2\support"

P Switch - User Profiles
The p switch loads an .arg user profile file. The “p” is short for profile. This file changes the way
that BricsCAD looks, as described more fully later in this chapter.

Here is an example of its use:
"c:\program files\bricsys\bricscad\bricscad.exe" /p "c:\bricscad\myui.arg"

TIP  BricsCAD includes a separate utility command for creating and editing user profiles, ProfileManager,
described at the end of this chapter.

PL Switch - Batch Plotting
The pl switch plots drawings in the background without showing the BricsCAD program window.
The “pl” is short for plot. It reads the files to be plotted from .dsd files, which are created earlier by
the Publish command in BricsCAD.

Here is an example of its use:
"c:\program files\bricsys\bricscad\bricscad.exe" /pl "c:\bricscad\plotlist.dsd"

BricsCAD reads the .dsd file and then plots the drawing according the instructions contained therein.
The .dsd file saved by the Publish command specifies the file name, layouts, page setups, plotter
and printer names, orientation, plot scale, number of copies, optional plot stamp, and the order in
which to plot the files.

The .dsd extension is optional. When the file name is missing, however, BricsCAD simply exits.

	 3  Changing BricsCAD’s Environment    37

TIP  When BricsCAD starts with the /pl switch, it ignores the setting of SingletonMode, and so multiple
instances of the program can be launched irregardless.

T Switch - Template Files
The t switch opens BricsCAD with a new drawing based on the .dwt template file specified by this
switch. The “t” is short for template. This file changes the way that the drawing initially looks.

Here is an example of its use:
"c:\program files\bricsys\bricscad\bricscad.exe" /t "c:\drawings\officetemplate.dwt"

Regserver and Unregserver Switches
The regserver and unregserver switches register and unregister BricsCAD’s COM common object
model. They operate only with Windows, because Microsoft does not provide COM for Linux or
MacOS systems.

OTHER STARTUP CONTROLS
(new in V20) BricsCAD offers variables that control which elements are displayed during startup.
These elements include the Launcher dialog box and the Start screen. Note that the splash screen
is controlled by the /l switch described above. (Functions new in V20 are shown in blue.)

GetStarted variable toggles the display of the Launcher dialog box:

GetStarted		 Meaning						

0			 Do not display
1 (default)		 Display the Launcher dialog box

The Launcher dialog box

Startup variable displays one of several startup dialogs:

Startup	 Meaning							

0		 Start new drawing with template file specified by BaseFile
1		 Display Startup dialog box
2		 Display the Start window without the ribbon (see figure below)
3 (default)	 Display the Start window with the ribbon

38    Customizing BricsCAD V20

The Launcher dialog box

Changing the Colors of the User Interface

BricsCAD allows you to change some aspects of its user interface directly, while other aspects are
controlled by Windows. With BricsCAD, the changes are made through the Settings dialog box.

THEME COLOR
(new in v20) You can change the colorization of the entire interface of BricsCAD between light and
dark. This is called the “theme color.” Prior to V20, the theme color was light; as of V20, the default
is dark. The change is made with the ColorTheme setting:

In BricsCAD, you the change a settings like this:

1.	 Enter the Settings command. Notice the Settings dialog box.

Settings dialog box

	 3  Changing BricsCAD’s Environment    39

2.	 In the dialog box, enter “theme” in the search field. If the field turns orange, it’s because you have mis-

spelled the word(s). Notice that dialog box jumps to the UI Color Theme settings.

Searching for “theme” variable

3.	 Click the droplist adjacent to UI Color Theme, and then choose a theme, either light or dark:

Choosing a different color for the paper space background

The changes you make in the Settings dialog box have immediate effect in BricsCAD, and so the
theme color changes as soon as you select the other one.

There is no “OK” or “Apply” button to click, because changes take effect immediately. Instead, click
the dialog box’s Close button:

Closing a dialog box

Background Color
The first change I always make to a new CAD installation is to the background color of the drawing
area. Usually, it are colored black by default.

(History note: Black was the traditional color in the days when CAD ran on the DOS operating
systems. Some users prefer the dark color, because entity colors look more vibrant against it.
Others prefer a white background, because that most closely resembles the paper upon which
the drawing will be printed. I prefer the white background color.)

In BricsCAD, you the change background color like this:

1.	 In the Settings dialog box, enter “background color” in the search field. Notice that dialog box jumps to the

Background Color variable.

Searching for “background color” variable

40    Customizing BricsCAD V20

2.	 Click the droplist adjacent to Background Color, and then choose a color, such as “White.”

Choosing a different color for the paper space background

TIP  If the color you are looking for is not on the droplist, then click Select Color to access the Color dialog
box. Choose a color from the dialog box, and then click OK.

In a similar manner, you can make changes to the background color of paper space (layouts) —
and many other areas of BricsCAD. For layouts, this is done with the Paper Space Background
Color option. (It affects the color of the “paper” in layouts, not the color of the background.)

If, after exiting the Settings dialog box, you want to revert the value, just enter the U (undo) command

TIP   The changes you make to the color of cursor’s axes have no effect the colors of the UCS icon’s axes,
which cannot be customized.

Changing Cursor Color and Size
In the drawing area, BricsCAD displays a “tri-color” crosshair cursor that has a different color for
each of the axes. The UCS icon follows the same color scheme.

Tri-color crosshair cursor

Tri-color UCS icon

Red = x
Green = y
Blue = z

Colors of the cursor and UCS icon

SETTINGS AT THE COMMAND LINE

Many times, using the BricsCAD command line is faster than the dialog box. You can avoid opening the Settings dialog
box (and then searching for variable names) by changing values directly at the command prompt: just type the name of
a variable.

For example, I find it faster to change the size of the crosshair cursor by entering the following variable name at the
command prompt, and then changing its value:

: cursorsize
New current value for CURSORSIZE (1 to 100): <3>: 100

	 3  Changing BricsCAD’s Environment    41

By default, the colors are assigned as follows:

Axis	 Default Color	 Color Number	

x	 Red		 11
y	 Green		 112
z	 Blue		 150

You change its color and size of the crosshair cursor like this:

1.	 In the Setting dialog box’s Program Options section, enter “x axis color” in the Search field.

2.	 Choose X axis Color, and then change its color.

Changing the color of the cursor axes

3.	 Repeat for Y axis Color and Z axis Color.

4.	 If you wish, you can also change the size of the cursor with the Crosshairs Size setting. The default is 3, which

means 3% of the screen size. A value of 100 (percent) makes the cursor full-size.

Changing the size of the crosshair cursor

Normally, the crosshair cursor appears only when you use a drawing or editing command. If you
want the crosshair cursor to always be on, then turn on the “Pointer defaults to crosshairs” option
of the Always Use Crosshairs option.

DISPLAY SETTINGS

Here are settings that affect the BricsCAD display:

Display Setting	 Variable Name	 Meaning					

Background Color 	 BkColor 	 Sets background color of model space drawing area
Paper Space Background Color 	 BkColorPs 	 Sets layout mode’s paper color

X Axis Color 	 ColorX	 Specifies color of crosshair cursor’s x axis
Y Axis Color 	 ColorY	 Specifies color of crosshair cursor’s y axis
Z Axis Color 	 ColorZ	 Specifies color of crosshair cursor’s z axis

Always Use Crosshairs	 AlwaysUseCrosshair	 Displays crosshair cursor in place of pointer cursor
Crosshairs Size	 CursorSize	 Sizes cursor cross hairs, as a percentage of drawing area

42    Customizing BricsCAD V20

Interface Parameters Controlled By the OS

Operating systems control some of aspects of BricsCAD’s user interface, such as fonts and colors
used by menus. This level of personalization is not available in Windows 8 or 10. In Windows 7,
follow these steps:

1.	 Right-click the desktop, and then select Personalize.

2.	 Click Windows Color and then choose Advanced Appearance Properties.

Customizing the appearance of Windows

3.	 In the Window Color and Appearance dialog box, change the fonts and color user interface elements.

In Linux, follow these steps:

1.	 Right-click the desktop, and then select Change Desktop Background.

2.	 Click Fonts to change the default fonts used for the interface.

3.	 Choose Theme to set the overall look and color of dialog boxes and other UI elements.

Customizing the appearance of Linux

	 3  Changing BricsCAD’s Environment    43

In MacOS, follow these steps:

1. 	 From the dock, choose Settings.

2. 	 In the System Preferences folder, choose General.

3.	 Make changes as desired.

General settings for MacOS

SNAP MARKER OPTIONS
Snap markers display information at the cursor about current object (or entity) snap modes.
BricsCAD allows you to choose the color, and other options, for snap markers and snap cursors.
Some of the settings are illustrated below:

Snap marker size.
Snap marker thickness.

Snap marker color.

Snap tooltip

Snap aperture size

  

Autosnap marker.

Autotrack vector color

AutoSnap tooltip.
Parts of snap markers that can be customized

44    Customizing BricsCAD V20

Most of these options are found near the end of the Display section of the Settings dialog box —
and not the Snap/Grid section!

Settings for snap markers

Other snap-related options are found at the start of the Snap Tracking section:

Additional settings for snap markers

Finally, there are aperture options in the Entity Snaps section:

Settings for the aperture

HYPERLINK CURSOR OPTIONS
Entities can contain hyperlinks, which are links to Web sites and other documents. When the cur-
sor passes over them, a tooltip reports the name of the link. A shortcut menu that displays options
useful for working with hyperlinks, which are added with the Hyperlinks command.)

The hyperlink menu and the tooltip are illustrated below:

  
Left: Hyperlinks options added to right-click menu.

Right: Tooltip reporting hyperlink attached to circle.

The Settings dialog box has the options for hyperlinks near the end of the Display section.

Settings for hyperlinks

	 3  Changing BricsCAD’s Environment    45

DYNAMIC DIMENSION OPTIONS
Dynamic dimensioning shows the lengths and angles of entities as they are being drawn. You turn
on this function by clicking DYN on the status bar.

Dynamic distance

Dynamic angle

Dynamic dimension color.
Dynamic dimension linetype.

Dynamic dimension distance

Elements of dynamic dimensions

Through the Settings dialog box, you can adjust the look of dynamic dimensions. The quick way to
access these is by right-clicking DYN on the status bar, and then choosing Settings.

Settings for dynamic dimensions

Support File Paths

BricsCAD uses a number of folders in which to store support files, such as those needed for fonts,
on-line help, and hatch patterns. BricsCAD locates the support files by consulting “paths” to the
folders. A path specifies the name of the drive and the folder, such as c:\BricsCAD. There are several
reasons why you may want to change the file paths that BricsCAD uses:

ÐÐ Your firm has clients with different standards for fonts, layers, and so on

ÐÐ You are a third-party developer, and need to have paths pointing to sets of different files

ÐÐ You import drawings from other CAD packages, and need to map different sets of fonts via .fmp files

You are not limited to specifying one single path; you can have BricsCAD search along multiple
paths, including those on networks. Multiple paths are separated by semicolons (;).

46    Customizing BricsCAD V20

Here is how to change paths and file locations:

1.	 Enter the Settings command.

2.	 In the Search field, enter “support file.” Notice the Files section.

3.	 To change a path, select a path adjacent to a heading. For example, click the field next to Support File

Search Path.

All of the paths to files

4.	 Notice the Browse button. Click it.

Adding and removing paths

5.	 Notice that BricsCAD displays the Folder List dialog box, which lets you add, remove, and reorder multiple

paths. Choose a path, and then close the file dialog box.

The Path List dialog box has buttons for controlling the list of folder names:

Button		 Name		 Meaning							

		 Add Folder 	 Adds a blank entry to the list
		 Remove Folder 	 Removes the selected folder from the list. Caution! BricsCAD does not

				 ask for deletion confirmation. If you erase a folder by accident, click
				 the Cancel button to exit the dialog box with no changes preserved.

		 Move Up / Down 	 Moves the selected folder up or down the list

TIP	 BricsCAD searches paths by the order in which they are listed this dialog box. By changing the
order, BricsCAD will find files in folders listed higher up sooner. For example, you might want BricsCAD to
search folders on your computer before searching the network — or the other way around.

	 3  Changing BricsCAD’s Environment    47

To add a folder, follow these steps:

1.	 Click the Add Folder button. Notice that a blank entry is added to the dialog box.

Blank line added to folders list

2.	 Click the Browse button. In Windows, notice the Browse for Folder dialog box.

	 (In Linux, the Choose a Folder dialog box appears.)

  
Left: Choose a Folder dialog box in Windows; rght: Choose a Folder in Linux

Below: Open a folder in MacOS

3.	 You can choose a folder on your computer, or from a computer connected over the network. Internet loca-

tions cannot, however, be chosen.

TIP  To create a new folder while in the files dialog box, just click the New Folder (or Create Folder) but-
ton, and then give it a name.

4.	 Click OK sufficient times to exit dialog boxes. Notice that the selected path is added to the list.

48    Customizing BricsCAD V20

SUMMARY OF FILES SETTINGS
Here are some details on the paths and support files specified through the Setting dialog box’s Files
section. You can modify all paths, except for ones that are read-only, such as “Local Root Prefix”
and “Menu Name.”

System variable names are shown in small caps; those in blue are specific to BricsCAD; those in
black are found in both BricsCAD and AutoCAD.

Files (and Paths)
Support File Search Path (srchpath) — folders that store fonts, customization, plug-ins, blocks,
linetypes, and hatch patterns. You can specify multiple paths, each separated by a semi-colon.

Save File Path (savefilepath) — path for storing temporary and automatically saved files.

Cloud Temporary Folder (cloudtempfolder) — folder in which BricsCAD stores temporary
download files from its online 24/7 service (formerly called “chapootempfolder”).

Image Disk Cache Folder (imagecachefolder) — folder which temporarily stores cached ras-
ter files placed as images in drawings.

Point Cloud Disk Cache Folder (pointcloudcachefolder) — folder which temporarily stores
point cloud files placed in drawings.

Local Root Prefix (localrootprefix; read-only, set by Windows) — folder in which BricsCAD
stores support files for the program specific to the local computer.

My Documents Root Prefix (mydocumentsprefix; read-only, set by Windows) — folder in which
BricsCAD accesses the logged-in user’s specific documents and other files.

Roamable Root Prefix (roamablerootprefix; read-only, set by Windows) — folder which stores
support files for the program when the user signs onto other (roamed) computers.

Version Customizable File (versioncustomizablefiles; ready-only, set by Bricsys) — current
version number of CUI and PGP files.

Xref Load Path (xloadpath) — path to temporary copies of demand-loaded xrefs.

Temporary Prefix (tempprefix) — path to the folders in which BricsCAD stores temporary files,
such as automatic backup files (filename.sv$).

Texture Map Path (texturemappath) — path to the folder holding texture map files.

Components Directory Path (componentspath) — path to component files used for mechanical
parts.

Render Material Directory Path (rendermaterialpath) — path to material files used for ren-
dering.

	 3  Changing BricsCAD’s Environment    49

Render Material Directory Path (rendermaterialspath) — path to material files used for
previews.

Details Directory Path (detialspath) — path to details files used for generated drawings.

Parametric Blocks 2D Directory Path (parametricblocks2dpath) — path to where BricsCAD
stores 2D parametric blocks.

Sheet Set Template Path (sheetsettemplatepath) — path to the folder holding sheetset tem-
plate files.

Alternate Font (fontalt) — font to use when a font cannot be found. Default is the simplex.shx
font file.

Font Mapping File (fontmap) — file that maps fonts. When a font cannot be found, BricsCAD
consults this .fmp file for the name of a matched font; if the matched font cannot be found, it uses
the alternative font specified above.

TIP	 If unexpected fonts appear for text in a drawing, this means that BricsCAD was unable to find
the correct fonts. Either use the default.fmp file to match equivalent fonts, or add the appropriate path to
the Fonts path.

Hyperlink Base (hyperlinkbase) — default path for relative hyperlinks in drawings.

Menu Name (menuname; read-only, specified by BricsCAD) — path and name to the menu file

Audit Control (auditctl) — toggles whether the Audit command creates reports in .adt files.

Audit Edit Count (auditerrorcount; read-only, set by BricsCAD) — reports the number of errors
found in the last audit of a drawing file.

Recent Path (recentpath) — most-recent path used to access a file.

Additional specifications for paths

50    Customizing BricsCAD V20

Project Paths
Project Search Path (projectname) — paths to the folders in which BricsCAD searches for raster
image files and externally-referenced drawing files.

Project Search Paths (projectsearchpaths) — names of projects and related paths. Click but-
ton to create new project settings.

TIP	 Projects allow you to assign one or more paths to a drawing project.

Printer Support Paths and Files
Plot Styles Path (plotstylepath) — path to the folders in which BricsCAD accesses .ctb and .stb
plot style files.

Plotter Configuration Path (plotcfgpath) — path to the folders in which BricsCAD stores .pc3
plot configuration files.

Plot Output Path (plotoutputpath) — path to the folders in which BricsCAD stores plot files.

Print File (printfile) — default name to use plot files; “.” means to use the drawing’s file name.

Templates Paths and Files
Template (basefile) — name of the .dwt or .dwg drawing file used to start new drawings upon
starting BricsCAD or when using the New command.

Template Path (templatepath) — path to .dwt template files.

Sheet Set Template Path (sheetsettemplatepath) — path to folder holding sheetset template files.

Default New Sheet Template (defaultnewsheettemplate) — name of the .dwg or .dwt file from
which to create new sheets.

BM Form Template Path (bmformtemplatepath) — path the folder holding template drawings
for BricsCAD Mechanical forms.

Tool Palettes Path
Tool Palettes Bar State (tpstate; read-only, set by BricsCAD) — reports whether the Tools Palette
is open or closed.

Tool Palettes Path (projectname) — path to the folder holding XTP tool palette definition files.

Dictionaries Section
Custom Spelling Dictionary (dictcust) — path and name of the .cus file used to store words added
by the user during the Spell command. No, it has nothing to do with cussing.

Main Spelling Dictionary (dctmain) — path and name of the .dic file used for checking the spell-
ing of text in drawings.

	 3  Changing BricsCAD’s Environment    51

Log Files Paths and Files
Log File Mode (logfilemode) — toggles the creation of .log files, which record all keystrokes
entered at the command prompt.

Log File Name (logilename;read-only, set by BricsCAD — name of the file with which to record
the command-line text, after the LogFileOn command turns on logging. When this entry is blank,
log files are named after the drawing.

Log File Path (logfilepath) — path to folder that stores log files.

Cloud Log (cloudlog) — determines whether 24/7 log files are stored (formerly called “chapoolog”).

File Dialogs
Remember Folders (rememberfolders) — default path for file-oriented dialog boxes, such as
Open and Save As. Options are:

ÐÐ 0 — Use Start In Path uses the Start In path specified in the Windows Properties dialog box

ÐÐ 1 — Use Last Path Used uses the path stored in the Recent Path option

Use Standard Open File Dialog (usestandardopenfiledialog) — toggles the display of path
icons in file-related dialog boxes.

Drawings Path (drawingpath) — path to the folders in which to search for .dwg drawing files.

Blocks Path (blockspath) — path to the folders in which search for .dwg block files.

Thumbnail Preview Image Size (thumbsize) — ranges from 64x64 pixels to 2560x2560.

Preview Window in Open Dialog (previewwndinopendlg) — toggles the display of the preview
image of .dwg files in dialog boxes.

Preview Type (projectname) — view to show in thumbnails:

ÐÐ Last Saved View of the drawing last time it was saved

ÐÐ Home View of the drawing in its default state

Places Bar (Windows only)
First thru Fourth Folder (placebarfolder1 thru placebarfolder4) — specifies the order which
places appear in file-related dialog boxes. Choose from the following places:

PlaceBarFolder	 Meaning				

1 		 Desktop
2 		 My Computer
3 		 My Documents
4		 Favorites
5		 Network
6		 My Recent Documents

Drawings Path (drawingpath) — lists additional folders for Open and SaveAs commands.

52    Customizing BricsCAD V20

Reusing User Preferences

After you customize BricsCAD through the instructions given by this book, you can save the changes
to .arg files. You can makes changes to how BricsCAD looks and works, and save them, and then
reuse them later.

For example, here are some reasons why you might want to create .arg files:

	 Projects. It may be necessary to customize BricsCAD for specific projects. Through .arg files, you can Brics-

CAD to look in project-specific folders, use specified plot settings, and so on.

	 Portability. Through .arg files, you can make any copy of BricsCAD your own. Import the .arg file into the CAD

program running on another computer, activate it, and when BricsCAD restarts, it will look just like your own.

In this case, you might be setting the size of the cursor and colors of user interface elements, such as the

background color of the screen.

The .arg file stores settings in the following areas of BricsCAD:

ÐÐ All settings that are reported by the Settings dialog

ÐÐ All settings that are stored in the Windows registry

ÐÐ Plotter settings used for model space

ÐÐ Settings made in dialog boxes

ÐÐ Project settings

ÐÐ Recent paths

ÐÐ Status bar settings

ÐÐ Tip of the Day setting

ÐÐ Toolbar settings

To make it easier to work with .arg files, BricsCAD includes the User Profile Manager utility pro-
gram. It displays a dialog box that lets you save and recall settings. More importantly, the dialog
box’s Start button launches BricsCAD with the selected user profile. (This is like using the /p switch
discussed earlier.)

TIP	 The .arg file format used by BricsCAD is compatible with AutoCAD. This means you can swap
user profiles between AutoCAD and BricsCAD.

LAUNCHING THE USER PROFILE MANAGER
You launch the manager from inside or outside BricsCAD:

ÐÐ Inside of BricsCAD through Tools | User Profile Manager, or enter the ProfileManager command.

ÐÐ Outside of BricsCAD through the Windows Start button: All Programs | Bricsys | User Profile Manager.
(This option is not available on Linux or Mac.)

	 3  Changing BricsCAD’s Environment    53

Notice the dialog box that appears. On the right is a column of buttons for creating and editing user
profile names. The buttons have the following meaning:

	 Create... creates new profiles, prompting you for a name. It uses the current settings found in BricsCAD.

	 Set Current sets the selected profile as the current one. The next time BricsCAD starts, it will use this profile.

	 Copy... makes a copy of a selected profile.

User Profile Manager is an external program

	 Delete removes the profile. (In-use profiles cannot be erased.)

	 Export... exports the selected profile as an .arg file.

	 Import... imports .arg files in to this copy of BricsCAD.

	 Start launches BricsCAD with the selected user profile.

	 OK closes the dialog box.

To rename a profile, right click its name, and then choose Rename from the shortcut menu.

There is one more button: clicking Bricsys opens the BricsCAD Web site in your computer’s default
Web browser.

Using the Profile Manager
To use the user profile manager, follow these steps:

1.	 Make changes to BricsCAD, such as in the Setting dialog box or in the Plot dialog box.

2.	 From the Tools menu, choose User Profile Manager.

3.	 In the User Profile Manager dialog box, follow these steps:

a.	 Click Create to create a new profile. Notice the Create Profile dialog box:

Naming the new profile

54    Customizing BricsCAD V20

b.	 Enter a name and description of the profile. It is a good idea to list the specifics of the profile in the

Description field, because that is the only way you will be able to determine what is in this profile.

	 c.	 Click OK.

4. 	 With the profile saved, you now have two primary options:

•	 Launch another copy of BricsCAD with the new profile — click Start.

•	 Simply exit the dialog box — click OK.

TIP  ou can create multiple desktop icons for BricsCAD, each associated with a different user profile. Use

the /p argument, as described earlier under “Command Line Switches.”

Adapting the
User Interface

To You

CHAPTER SUMMARY

The following topics are covered in this chapter:

•	 Accessing commands in the drawing tabs

•	 How to modify the LookFrom widget

•	 Taking full advantage of the command bar

•	 Repositioning the ribbon

Some of BricsCAD’s customization fall outside the realm of the Settings and Customization
dialog boxes, as described in other chapters of this book. Some aspects of the user interface can be
changed directly in the interface, instead indirectly through a dialog box.

In this chapter, you learn how to directly change the looks of drawing tabs, LookFrom widget, rib-
bon, and command bar.

CHAPTER 4

56    Customizing BricsCAD V20

Customizing the Command Line

The command line is the primary way in which BricsCAD communicates with you. Here you can
enter the names of commands, their options, and specify positions in the drawing. The command
line (a.k.a. “command bar” or “command panel”). is usually found along the bottom of the BricsCAD
window, but it doesn’t need to be there or even look the way it does.

Command bar’s default location at the bottom of the BricsCAD window

Since this is a book about customization, let’s see how we can customize the command line. For
instance, you can make the text look different. Here I changed the font to Bauhaus and the size to
24 points (1/3" tall).

Command bar with different font and font size

THE PARTS OF THE COMMAND BAR
These are the parts to the command bar, and the controls that are embedded in it:

Command historyClick to close
command bar

Drag to move
command bar

Enter your
response here

Prompts from
BricsCAD

Scroll through earlier
command history

Parts of the command bar

Resizing and Hiding the Command Line
The command bar typically displays three or four lines of history, which is the text of previously
displayed prompts. When you need to see more lines of history, then you have these choices:

ÐÐ Drag the bar’s top border to stretch it taller or shorter. For the exact location to do this, see the double-ended
arrow cursor shown below.

Resizing the command bar

	 4  Adapting the User Interface to You    57

ÐÐ Drag the bar away from its docked position, and then resize it, as shown below.

Floating command line dragged away from its docked position

You can turn off the Command bar with the CommandLineHide command, but I don’t recom-
mend this; there is no good reason to do so — the BIM workspace does this by default, and I find
it unhelpful! When the command line is turned off, it still displays the command history in the
drawing area. It looks like this:

Prompts scrolling into the drawing area

After a few moments, the history fades from view. To change the number of lines of history appear-
ing in the drawing area, enter the CliPromptLine variable and then change its value. Here are the
valid values:

CliPrompLine	 Meaning						

0		 Turns off the prompt history
1 		 Minimum number of lines
4		 Default number of lines of prompt history
64		 Maximum number

When the command bar is turned off, the current prompt is always displayed on the status bar.

The CommandLine command turns it back on. You can use the Ctrl+9 (Cmd+9 on Macs) shortcut
keystroke to toggle its visibility.

Changing Command Bar Actions
The command line can be made to present different kinds of information. The easiest way to do
this is by right-clicking the command line:

Shortcut menu presenting command line options

58    Customizing BricsCAD V20

The options are sometimes governed by the variables, as described here.

AutoComplete. The AutoCompleteMode variable controls the actions of the pop-up menu that
displays a list of command and variable names that begin with the same letter(s) — auto-complete
mode. Illustrated below is what happens when users type an “a”: they can then select one of the
names or aliases from the list, and then BricsCAD executes the command or variable.

Autocomplete entries for ‘a’

The default value of this variable is 15, which is the sum of 1+2+4+8, representing the options that
are turned on by default. When set to 0, auto-complete is turned off.

AutoCompleteMode	 Meaning						

0			 Disabled
1			 Enable auto-complete (default)
2			 Auto-append names (default)
4			 Display names that begin with the same letter(s) (default)
8			 Display icons (unsupported; default)
16			 Exclude the display of system variables
32			 Display preference variables found only in BricsCAD

While the display of icons seems to be an option, BricsCAD does not do this at the time of writing.
The value (8) is included for compatibility, so that routines imported from other DWG editors will
work smoothly.

Delay Time. The AutoCompleteDelay variable specifies how long BricsCAD should wait before
displaying the auto-complete list. The time is measured in seconds.

AutoCompleteDelay	 Meaning						

0			 Minimum value; no delay
0.3			 Default value; brief delay
10			 Maximum value; long delay

Copy copies the selected text from the command line to the Clipboard. Some text has to be selected
for this command to become available.

Clear erases all text from the command line, including the history. BricsCAD asks if you are sure:

Checking if you really want to erase the command history

	 4  Adapting the User Interface to You    59

Select All selects all text in the command line, including the history.

The history consists of previous command entries. By default, the program retains 256 lines of
history; you can change this number to be larger or smaller with the ScrlHist variable.

Paste pastes text from the clipboard into the command line. This option appears only when the
cursor is next to the ‘:’ prompt, and the Clipboard contains data that can be pasted; text, not images.

You can paste text previously copied to the Clipboard with the Copy option, as well as text from
other programs formatted as scripts (see Chapter 20) or LISP routines (see Chapter 21).

Options displays the Command Line section of the Settings dialog box. Many of the settings are
discussed next.

TIP  To record the command history in a file, use the LogFileOn command to begin saving it, and then use
LogFileOff to turn off the recording.

Use the LogFileName to specify a different name for the .log file (the default is the name of the drawing),
and LogFilePath to change the folder in which the file is stored (the default is C:\Users\<login>\AppData\Lo-
cal\Bricsys\BricsCAD\V20x64\en_US.

The log file system is independent of the ScrlHistory variable’s limit on lines, and so keeps recording every-
thing until you turn it off.

Additional Command Line Variables
You change the look of the command line and its close cousin Prompt History through variables in the
Command Line section of the Settings dialog box. The settings descriptions use some unusual terms:

Command Bar Element		 Term Used by Settings	 Abbreviation Used by Variables	

Command Line			 Edit			 CmdLine
Prompt History			 List			 CmdLineList
Text				 Foreground		 Fg (Background = Bg)
Text scrolling into drawing area	 Fading log			 FadingLog
Text in drawing area background	 Frame or floating frame	 CmdLineFrame

Command Line section of the Settings dialog box

60    Customizing BricsCAD V20

Command Line Font Name. The CmdLineFontName variable specifies the font used by the com-
mand line and Prompt History window. Any TrueType font installed on your computer can be used.

CmdLineFontName	 Meaning						

Consolas		 Default font name

To change the font displayed by the command line and text window, click the field, and then choose
a font from the droplist.

Selecting a font for the command line

Command Line Font Size. The CmdLineFontSize variable sets the size of the text in the command
bar and Prompt History window. I would like it I could set different font sizes for the command line
(smaller) and Prompt History window (larger), but this is not possible.

TIP  To display the Prompt History window, press F2.

Command Line List Background Color. The CmdLineListBgColor variable specifies the back-
ground color of the prompt history window (“list”). The default is 250,250,250 — a light gray.

The triplet of numbers specify levels of red, green, and blue. The numbers indicate the strength
of each component color, and ranges from 0 (black or no color) to 255 as the maximum strength
for each color.

CmdLineEditBgColor		 Meaning					

0,0,0				 Black
255,0,0				 Red
0,255,0				 Green
0,0,255				 Blue
250,250,250			 Light gray (default value)
255,255,255			 White

	 4  Adapting the User Interface to You    61

To change the color, click the field in the Settings dialog box, and then choose a color.

Choosing a color

If the color you want isn’t in the list, then click Select Color to access the Color dialog box. Choose
a color, and then click OK.

Selecting a color

(Early releases of BricsCAD used hexadecimal numbers to assign colors to these variables. Hexa-
decimal numbers are natural to computer systems, are base 16, and are signaled by the # prefix,
such as #fe00ee.)

Command Line List Foreground Color. The CmdLineListFgColor variable specifies the foreground
color of the history window. By “foreground,” BricsCAD means the color of the text. The default is
64,64,64 — a very, very dark blue.

Command Line Edit Background Color. The CmdLineEditBgColor variable specifies the back-
ground color of the command bar (“edit”). The default is 250,250,250, a light gray.

Command Line Edit Foreground Color. The CmdLineEditFgColor variable sets the foreground
(text) color of the command line panel. The default is 32,32,32.

(new in v20) Command Line Option Background Color. The CmdLineOptionBgColor variable
sets the background color of option names, which can be selected with the cursor.

Command Line Fading Log Background Color. The CmdLineFadingLogBgColor variable sets
the background color for text that appears in the drawing area (“fading log”).

62    Customizing BricsCAD V20

When the command bar is off, the last four lines of command text appear in the drawing area. After
a few seconds, the text fades away. When you next enter a command or pick an option, the on-screen
text reappears. This works whether or not cleanscreen is on.

Command line text in the drawing area

Command Line Fading Log Foreground Color. The CmdLineFadingLogFgColor variable sets
the color of the text that scrolls in the drawing area.

Command Line Fading Log Fading Delay. The CmdLineFadingLogFadeDelay variable determines
how long the text appears in the drawing area before it starts to fade away; default is 2 seconds.

Command Line Fading Log Transparency. The CmdLineFadingLogTransparency variable
determines the transparency of text that appears in the drawing area; default is 30%, where 0%
is opaque.

Command Line Frame Transparency When Active. The CmdLineFadingActiveTransparency
variable determines the transparency of the background (“fading frame”) to text that appears in
the drawing area; default is 10%, where 100% is fully transparent.

Command Line Frame Transparency When InActive. The CmdLineFadingInctiveTransparency
variable determines the transparency of the background when the command line is not being used;
default is 10%, where 100% is fully transparent.

(new in v20) Command Line Use New Floating Frame. The CmdLineUseNewFrame variable
toggles the appearance of a new frame for text that scrolls into the drawing area; this is a test vraible
and may be changed in the future; default is off.

Command Line State. The ClsState (read-only) variable reports whether the command bar is
open, or not. Because it is a read-only variable, users cannot change it.

ClsState		 Meaning						

0			 Command bar is hidden
1			 Command bar is visible (default)

TIP  Use Ctrl+9 (Cmd+9 on MacOS) to turn the command line on and off quickly.

	 4  Adapting the User Interface to You    63

Prompt Prefix. The CmdLnText variable specifies the prompt character(s) displayed by the com-
mand bar. While the default is a colon (:), BricsCAD allows you to change it to something else, such
as AutoCAD’s traditional prompt, ‘Command:’.

CmdLnText		 Meaning						

:			 Prompt text displayed by command bar

Scroll History. The ScrlHist variable determines how many lines of command history BricsCAD
remembers. This affects both the command line and the Prompt History window.

ScrlHist		 Meaning						

0			 No history is kept
256			 Default value
2147483647		 Maximum value

Even More Command Line Variables
There are additional variables located elsewhere in the Settings dialog box:

CliPromptLines variables determines how many lines of command history appear in the drawing
area when the Command panel is turned off.

LastPrompt variable reports the name of the command entered most recently. It is read-only.

PromptOptionFormat variable determines how command options are displayed on the command
line and in the prompt menu; option 4 is meant for international versions of the software:

PromptOptionFormat	 Meaning						

	 0 (default)	 Show description only				
			  Set end of arc or [draw Lines/Angle/CEnter/CLose/...	 	
	 1		 Show keywords only					
			  Set end of arc or [Line/Angle/CEnter/CLose/...			
	 2		 Show description, with keywords in brackets		
			  Set end of arc or [Draw lines(Line)/Angle/Center(CEnter)/Close(CLose)/...	
	 3		 Show description, with shortcuts in brackets		
			   Set end of arc or [Draw lines(L)/Angle/Center(CE)/Close(CL)/...		
	 4		 Show local keyword, with global keyword in brackets	

PromptOptionTranslateKeywords variable toggles the use of international commands. When
off, the underscore (_) prefix is not needed during command input; default = on.

TIP	 To change the color of the drawing area, use the

64    Customizing BricsCAD V20

Customizing the Look of the Ribbon

The ribbon is like a series of overlapping toolbars, where of a row of tabs segregate the overlapping
“toolbars” that group similar functions. A tab is further segregated into a row of adjacent panels,
each panel containing a group of buttons, flyouts, and/or droplists — just like toolbars!)

Ribbon displayed by the 2D Drafting workspace

Because Bricsys wrote its own version of the ribbon interface, it is equally available on the Windows,
MacOS, and Linux versions — unlike most other CAD systems. You customize the ribbon through
the Customize command. (See Chapter 9 for tutorials on creating and editing ribbon tabs and pan-
els with the Customize command. The chapter also includes a complete panel design reference.)

When no drawing is open, all buttons on the ribbon turn gray, to indicate that they are unavailable.

The blue B item is not part of the ribbon, but is a menu that accesses file-related function, such as
opening and saving drawings.

B button displaying file-related functions

HANDLING THE RIBBON
BricsCAD comes with several ribbons. To switch between them, you don’t use the Ribbon command,
as you might think. Instead, you use the Workspaces command. Ironically, a Workspaces droplist
is by default not available on the ribbon, although it is on the status bar.

To switch between ribbons, you can change the workspace using a toolbar, the status bar, or the
command line, as follows:

	 4  Adapting the User Interface to You    65

ÐÐ Workspaces droplist on a toolbar:

Choosing a workspace from the toolbar

ÐÐ Workspaces button on the status bar:

Choosing a workspace from the status bar

ÐÐ Workspace command in the command bar:
	 : workspace
	 Workspace: setCurrent/SAveas/Rename/Delete/SEttings/? <setCurrent>: ?

	 Workspace Name

	 BIM
	 Drafting
	 Drafting (toolbars)
	 Mechanical
	 Modeling
	 Modeling (toolbars)

The names of workspaces changed with BricsCAD V19 and V20:

Old Workspace Name	 New Workspace Name		 Default Display				

2D Drafting		 Drafting			 Displays the ribbon
...			 Drafting (Toolbars)		 Displays the menu bar and toolbars, no ribbon
...			 Modeling			 Displays the ribbon
3D Modeling		 Modeling	 (Toobars)		 Displays the menu bar and toolbars, no ribbon
BIM			 BIM			 Displays the ribbon
Mechanical		 Mechanical		 Displays the ribbon

You can drag the ribbon away from its docked position; the floating ribbon looks like this:

Floating ribbon

While it is possible to float the ribbon, I find no useful purpose to it.

The Ribbon command displays the ribbon; RibbonClose closes it.

66    Customizing BricsCAD V20

Related System Variables
RibbonState (read-only) variable reports whether the ribbon palette is open or closed. Users can-
not change this variable, because it is read-only.

RibbonState		 Meaning						

0			 Ribbon is closed
1 			 Open

RibbonDockedHeight variable determines the height of the ribbon when docked. The height is
measured in pixels. I recommend that you do not change this number.

RibbonState		 Meaning						

0 			 Ribbon sizes itself to the height of the selected tab
120 			 Default value
500 			 Maximum value

Customizing the Look of Drawing Tabs

Drawing tabs let you switch quickly between open drawings. BricsCAD calls them “document tabs.”

Each tab names the open drawing

(new in V20) The first tab accesses the Start screen, which you can also access with the GoToStart
command. This tab can be turned off by clicking the gray x.

As well, the tabs provide a shortcut to file-related commands, such as Open and Close, plus some
commands you won’t find elsewhere in BricsCAD. Right-click any drawing tab. although the list of
commands you see depends on which tab you right-click.

Shortcut menu of commands for controlling tabs and drawings

	 4  Adapting the User Interface to You    67

Among the unique commands, I find Open Folder particularly useful. The unique commands per-
form these functions:

ÐÐ Close Left Tabs — closes all drawings to the left of this tab. This is useful for closing older drawings. Drawings
that were opened earlier tend to appear at the left end of the row of tabs

ÐÐ Close All But This — closes all other drawings, except the current one. I find this useful when I open an entire
folder’s worth of drawings, and then want to keep just one open

ÐÐ Save All — saves all drawings at once

ÐÐ Duplicate Tab — makes a copy of the current drawing, and then names it copy_name.dwg

ÐÐ Open Folder — opens the folder from which the drawing was opened

Related System Variables
The look of drawing tabs is customized through variables. Be aware that the changes made to these
variables do not take effect until the next time BricsCAD is started. So to apply the change(s), exit
BricsCAD, and then start it again.

DocTabPosition variable — places the tabs at the top, bottom, left, or right of the drawing area.
DocTabPosition		 Meaning						

0			 Position tabs at the top of the drawing area (default)
1			 Position tabs at the bottom of the drawing area
2			 Position tabs at the left edge of the drawing area
3			 Position tabs at the right edge of the drawing area

The ShowDocTabs variable turns the tab row on and off.
ShowDocTabs		 Meaning						

0			 Does not display tabs
1			 Displays tabs (default)

You can also access these variables in the Settings dialog box.

Customizing the Look From Control

BricsCAD has a LookFrom widget in the upper right corner of the drawing area. I find it very useful
for quickly changing the 3D viewpoint.

LookFrom widget at rest

68    Customizing BricsCAD V20

Click on one of the triangles to see a 3D model from a different point of view:

Viewing a 3D model from an isometric viewpoint

Here is how to use it:

1.	 Pass the cursor over the widget. Notice that small triangles appear, as does the preview image of a simple

chair appears.

Cursor activating the LookFrom widget

2.	 Pause the cursor over a triangle:

•	 You get a preview of what the 3D view will look like via the chair icon

•	 A tooltip tells you name of the view, such as “Top Front Left:

•	 The green dot indicates the cursor position, kind of like a laser pointer.

3.	 Click the triangle to change the 3D viewpoint.

TIPS	 To see the bottom views: hold down the Ctrl (or Cmd in Mac) key while the cursor is in the
LookFrom widget.

To return to the home (default) view: click the center of the LookFrom control. (This is particularly helpful
in Twist mode.) Or, press the Home key on the keyboard to return to the home view.

There are two ways to customize the way the LookFrom control operates. The easier one is right-
click the control, and then choose an option from the shortcut menu:

Shortcut menu of LookFrom options

Most of the options in the shortcut menu are straight-forward, but I do want to explain the differ-
ence between Isometric and Twist modes:

	 4  Adapting the User Interface to You    69

ÐÐ Isometric mode is like using the Viewpoint or View commands; clicking a triangle jumps to the viewpoint

LookFrom widget in isometric mode

ÐÐ Twist mode is like using the RtRotF (real time view rotation) command; clicking an arrow rotates the viewpoint

LookFrom widget in view rotation mode

LOOKFROM COMMAND
The other way to customize the widget is through the LookFrom command, from which you can
turn the widget off (and on) and access its settings:
: lookfrom
LookFrom [ON/OFf/Settings] <ON>: (Enter an option)

The ON and OFf options turn the widget on and off.

The Settings option opens the Settings dialog box at the LookFrom section.

LookFrom variables in the Settings dialog box

With Settings, you can adjust properties of the widget, such as its translucency and position.

Of particular interest is the number of isometric viewpoints it can display, which is set through
“Direction Mode” or the LookFromDirectionMode variable. The following table illustrates these
modes:

LookFromDirectionMode		 Number of Views					

0 				 6 orthogonal views		 	

	 							
1 				 14 views; no flat views of corners (default)

	 							
2				 18 views; top down corners		

	 							
3				 26 views; eight top down corners	

	 							

70    Customizing BricsCAD V20

Related System Variables
The following variables control the look and action of the LookFrom widget. Some of the names
begin with “NavVCube.” This is AutoCAD’s name for its “navigation view cube” widget.

The LookFromFeedback variable toggles the feedback display between tooltips and the status bar:

LookFromFeedback	 Meaning							

0			 No feedback
1			 Tooltips near the LookFrom widget (default)
2			 On the status bar

The LookFromDirectionMode variable selects the type of display, as illustrated above.

The LookFromZoomExtents variable toggles the use of Zoom Extents when a viewpoint changes:

LookFromZoomExtents	 Meaning							

0			 Zoom is unchanged
1			 Zoom extents is executed when the view direction changes (default)

The NavVCubeDisplay variable toggles the display of the LookFrom widget:

NavVCubeDisplay	 Meaning						

0			 Not displayed
1			 Displayed (default)

The NavVCubeLocation variable positions the widget in one of the four corners of the drawing area:

NavVCubeLocation	 Meaning						

0			 Top right corner of the drawing area (default)
1			 Top left corner
2			 Bottom left corner
3			 Bottom right corner

The NavVCubeOpacity variable determines the “see through-ness” of the widget:

NavVCubeOpacity	 Meaning						

0			 Invisible
50			 Semi-transparent (default value)
100			 Opaque

The NavVCubeOrient variable determines whether view changes are relative to the world coor-
dinate system or the current user-defined coordinate system:

NavVCubeOrient		 Meaning						

0			 Relative to WCS (default)
1			 Relative to UCS

	 4  Adapting the User Interface to You    71

Maximizing the Drawing Area

To maximize the screen means to minimize the number of user interface elements. Use the
CleanScreenOn command to maximize the drawing area, CleanScreenOff to return the UI to
normal. Pressing Ctrl+0 (Cmd+0 on MacOS) does the same thing much more quickly.

BricsCAD’s drawing area maximized

The CleanScreenOptions variable specifies which UI elements to keep on during clean screen
mode. The default value is 15, which means the drawing tabs, panels, toolbars, and ribbon are hid-
den, while the command line, status bar, and menu bar remain visible.

CleanScreenOptions	 Meaning					

0			 Hide no elements				
1 (default)		 Hide document (drawing) tabs			
2 (default)		 Hide dockable panels (palettes)		
4 (default)		 Hide toolbars				
8 (default)		 Hide ribbon				
16			 Hide command line panel (bar)			
32			 Hide status bar				
64			 Hide menu bar				

USING MULTIPLE MONITORS
Most computers, even today’s laptops, support two or three monitors. I find it useful to place all
palettes and bars on the second monitor. This maximizes the area available for the BricsCAD draw-
ing screen.

72    Customizing BricsCAD V20

Indeed, when I write these books, I have five screens surrounding me. My Windows 7 workstation
has three:

Three monitors at different resolutions

ÐÐ Main monitor (2048x1152 resolution) for the InDesign desktop publishing software

ÐÐ Second monitor (1360x768) for InDesign’s many palettes and PaintShop Pro for editing figures

ÐÐ Third monitor (1920x1080) for displaying BricsCAD

I find it beneficial to have the secondary monitor run at a lower resolution, because it makes the
user interface larger and so easier to read.

To check how BricsCAD works with Windows 10, I have a separate laptop running that operating
system.

Because BricsCAD also runs on Linux and MacOS, I have the cheapest Mac mini connected to a
separate 1920x1080 monitor. The Mac runs the VM Virtual Box software from Oracle (free from
https://www.virtualbox.org) which handles the Mint Linux operating system (download free from
https://www.linuxmint.com/download.php).

In the figure below, the “linuxmint” window is running on the Mac desktop.

Mac running MacOS natively and Linux in a virtual machine window

When I make screen grabs on them or the Mac-Linux system using WinSnap, pCloud captures the
images automatically, and then places them in a folder on my Windows 7 computer for placement
in the InDesign document.

	 4  Adapting the User Interface to You    73

TIP	 Even if your computer’s graphics board is limited to working with one (or two) monitors, there
is a workaround. DisplayLink is a USB dongle that allows you to add a monitor without needing a video
port. Windows sees the dongle as another screen.

Several manufacturers make the hardware for under $100; see http://www.displaylink.com. Software is
included that runs on the computer to redirect the “second screen” graphics to the dongle.

Customizing Other UI Elements

To customize the look of other user interface elements, see the following chapters:

To change the look of...	 See Chapter...				

Menus			 6
Toolbars		 7
Quad cursor		 12
Rollover tooltips		 13
Palettes			 15

74    Customizing BricsCAD V20

Notes

Working with the
Customize Dialog Box

PART II

Notes

Introduction to the
Customize Dialog Box

The Customize dialog box is the primary place in which to customize BricsCAD — to change
the way it looks and works. This dialog box handles many customization tasks, including the fol-
lowing ones:

ÐÐ Creating and changing toolbars, menus, shortcut menus, mouse and digitizer buttons, ribbon tabs and panels,
workspaces, Quad cursor, rollover properties, and tablet menus

ÐÐ Writing and editing macros

ÐÐ Creating and modifying keyboard shortcuts, command aliases, and shell commands

ÐÐ Importing and exporting full and partial menu files in .cui , .cuix, .icm, .mns, and .mnu formats

CHAPTER SUMMARY

The following topics are covered in this chapter:

•	 Touring the Customize dialog box

•	 Understanding the CUIX customization file

•	 Accepting and rejecting changes to customization

•	 Reviewing the XML format

•	 Working with partial CUI files

CHAPTER 5

78    Customizing BricsCAD V20

The Customize dialog box is your one-stop shop for customizing ribbons, macros, and more, and
so here are some of the ways to access this important dialog box:

ÐÐ Enter Customize at the command prompt

ÐÐ Or, enter the alias cui (this is my preferred method)

ÐÐ Or, from the Tools menu, select Customize

ÐÐ Or, right-click any toolbar or ribbon, and then from the shortcut menu select Customize

This chapter introduces the Customize dialog box by providing an overview of its functions. Each
of the nine following chapters describe in turn how to customize the user interface as indicated by
the tab name — Menus, Toolbars, Ribbon, and so on.

Tabs segregating customization of interfaces elements

The chapters follow roughly in order of how the customizations appear in the dialog box:

Chapter 	 Tab Name(s)			 Topic						

  6		 Menus				 Menus and context (right-click) menus
  7		 Toolbars				 Toolbars
  8		 Applies to most tabs *		 Macros and diesel code
  9		 Ribbon				 Ribbon tabs and panels
  10		 Keyboard				 Keyboard shortcuts

  11		 Mouse, Tablet			 Mouse buttons, double-click actions, and tablet menu

  12		 Quad 				 Quad cursor
  13		 Properties				 Rollover properties
  14		 Workspaces			 Workspaces

  15		 Command Aliases, Shell Commands	 Aliases and and shell commands

*)  Macros and Diesel code are used by menu and menu items, toolbar buttons, ribbon buttons, mouse actions, tablet
menus, and Quad buttons

BricsCAD stores information about the ribbons, macros, and all the rest in .cui files, where “cui” is
short for customize user interface. The program also reads menu files from AutoCAD (.cuix, .mnu
and .mns) and IntelliCAD (.icm).

Aliases and shell commands are stored in a different format and in .pgp files.

	 5  Introduction to the Customize Dialog Box    79

Touring the Customize Dialog Box

The Customize dialog box has three primary areas (a.k.a. panes): customize, tools, and properties.

Customize pane

Properties pane

Commands pane

Customize dialog box

ÐÐ Customize pane (on the left) lists items that can be customized; the content of this pane varies, depending on
which tab is selected, whether “Menu” or “Shell Commands”

Customize pane, found in the left half of the dialog box

ÐÐ Tools pane (on the right) lists all of the commands found in BricsCAD; they are sorted according to menu
order, for example, all file-related commands are listed under “File”

Tools pane, found in the right half of the dialog box

ÐÐ Properties pane (at the bottom) edits the properties, such as title, Diesel code, Help text, command macro, and
image associated with the currently-selected item; the content of this pane varies, depending on the tab and item

Properties pane, found at the bottom of the dialog box

80    Customizing BricsCAD V20

ABOUT CUI FILES

Default.cui is the name of the file that defines the menus and toolbars of BricsCAD. It was developed by Autodesk, which
then switched to CUIX. The “X” indicates CUIX is a zipped package file that holds all the files needed by the user inter-
face including icons. (It can be viewed with software like PkZIP or 7-Zip.)

CUI files are written in XML, which is short for eXtended Markup Language. XML is a file format that is an extension of
HTML, the hyper text markup language used for Web pages. The format is in ASCII, and looks just like HTML, but uses
custom tags. Custom tags are used to identify the data stored in CUI files. For example, <Macro> identifies the start
of a macro, while <\Macro> marks its end. Because it is like HTML , you can use any Web browser to parse CUI files.
Because the format is written in plain text (as shown below), and because the XML specification requires that every
piece of data be identified, CUI files are human-readable. Well, in theory; in practice, it quickly becomes tedious trying
to read the content of CUI files, because of the repetitive nature of tags.

Bellow you see the first part of BricsCAD’s default.cui file as written in XML format. This is the first of several dozen
lines of a file that’s 343 pages long in BricsCAD V20. I’ve boldfaced some of the macro-related items to help them stand
out from the XML tags.

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<CustSection xml:lang="en-US">
 <FileVersion IncrementalVersion="2" MajorVersion="0" MinorVersion="3" UserVersion="0"/>
 <Header>
 <CommonConfiguration>
 <CommonItems>
 <PartialMenuFile>C:\Users\rhg\Desktop\partial.cui</PartialMenuFile>
 </CommonItems>
 </CommonConfiguration>
 <WorkspaceRoot>
 <WorkspaceConfigRoot/>
 </WorkspaceRoot>
 </Header>

 <MenuGroup Name="BRICSCAD">
 <MacroGroup Name="File">
 <MenuMacro UID="qnew">
 <Macro>
 <Name>QNew</Name>
 <Command>^c^c_qnew</Command>
 <HelpString>Creates a new drawing from the current default template</HelpString>
 <Image ID="qnew"/>
 </Macro>
 </MenuMacro>

 <MenuMacro UID="new">
 <Macro>
 <Name>New...</Name>
 <Command>^c^c_new</Command>
 <HelpString>Creates a new drawing</HelpString>
 <Image ID=”new”/>
 </Macro>
 </MenuMacro>

 <MenuMacro UID=”newwiz”>
 <Macro>
 <Name>New Wizard...</Name>
 <Command>^c^c_newwiz</Command>
 <HelpString>Creates a new drawing using ‘Create New Drawing’ wizard</HelpString>
 <Image ID=”newwiz”/>
 </Macro>
 </MenuMacro>

et cetera...

	 5  Introduction to the Customize Dialog Box    81

For the remainder of this chapter, I’ll describe the parts of the Customize dialog box common to
all areas. I begin at the top, and then work my way to the bottom of the dialog box. Later chapters
describe unique content.

CUSTOMIZE’S MENU BAR
The top of the dialog box sports a menu bar with a single, lonely-looking menu item. The File menu
lets you open and save full and partial .cui files.

The lonely File menu on the menu bar

Click File to view the menu:

Options displayed by the File menu

Here are the task the menu items perform:

Load Main CUI File opens a .cui, .cuix, .mnu, or .icm file:

FIle Type	 Meaning								

.cui		 Format in which BricsCAD stores customizations;
		 also used by older releases of AutoCAD
.cuix		 Format in which AutoCAD currently stores customizations;
		 “x” refers to an archive file, which includes CUI, image files, and so on
.mnu		 Format in which the oldest releases of AutoCAD stored customization;
		 also used by many AutoCAD work-alike programs

.icm		 Format in which IntelliCAD originally stored customizations

Warning   A new Main Cui file completely replaces the current one, thereby replacing all existing menus,
toolbars, shortcut menus, and so on.

ABOUT MAIN AND PARTIAL CUSTOMIZATION

The difference between “Main” and “Partial” customization files is subtle, but crucial:

Main file covers all the user interface elements governed by the Customize dialog box. Change the Main file and the
entire user interface changes — except for the portions defined by the Partial files, if any are loaded.

Partial file is like an appendix, an independent addition. Change the Partial file, and only the parts it defines are changed;
the rest of the user interface is unaffected. Partial files are used by third-party add-ons (and you!) for customizing the
CAD program.

BricsCAD must have a Main file loaded for the user interface to exist; no Partial files need be loaded.

82    Customizing BricsCAD V20

	 Save Main CUI File saves the current .cui file by another name.

TIP  You don’t need to use the Save Main CUI File option to save changes to customization, because Brics-
CAD saves them automatically when you click OK to exit the dialog box.

	 Load Partial CUI File opens a partial .cui file. The difference between a main and a partial file is that the con-

tents of a partial .cui file are added to the existing user interface. This option is useful for adding menus and

toolbars that were customized for add-on applications.

	 Create New Partial CUI File creates a (nearly) empty .cui file. Its sparse content is shown below:

	 <?xml version="1.0" encoding="UTF-8" standalone="no" ?>
	 <CustSection xml:lang="en-US">
	 <MenuGroup Name="DEFAULT"/>
	 </CustSection>

	 (I would rather that this command creates a partial file of the selected item, such as a toolbar or a menu. The

workaround is to copy and paste the items I want into the file. This is not, however, a great solution, consid-

ering the complexity of the CUI format.)

	 Import Workspaces — imports workspace info from .cui files.

TIP  BricsCAD can import menu files from other CAD systems, such .cuix from recent releases of AutoCAD,
.mnu from older AutoCAD systems, and IntelliCAD’s .icm files.

These are imported through the File | Load Main CUI File option. In the Files of Type droplist, choose the
other format, as illustrated below.

		

CUI Customization Files
As BricsCAD store customizations in .cui files, it shows the name of the current one in the filed next
to Main Customization File:

Location of the primary customization file in Windows

This single default.cui file contains everything to do with menus, shortcut menus, toolbars, buttons,
tablets, Quad cursor, ribbon, and keyboard shortcuts— except for aliases and shell commands, which
are saved in a separate default.pgp file. Both of the CUI and PGP files can be exchanged with other
BricscCAD users and with other CAD programs that read them, such as AutoCAD.

The Browse button (at the end of the Main Customization File field) lets you load a different
.cui file. You want to do this when you need to quickly change the user interface of BricsCAD.

	 5  Introduction to the Customize Dialog Box    83

Here is how to do this:

1.	 Click the button.
2.	 Choose a .cui, .cuix, .mnu, or .icm file from the Select a CUI File dialog box.

Selecting another user interface by opening another .cui file

3.	 Click Open. Notice that all of the user interface of BricsCAD changes immediately!

Aliases and shell command definitions are stored in a different file, called default.pgp. “PGP is short
for program parameters, but rumor has it that it was nicknamed the “pigpen” file. Click the “Com-
mand Aliases” or “Shell Commands” tab to see the location of the .pgp file:

Path to the default.pgp file

In Windows, the default.cui files are found in these folders:

	 Original files 		 C:\Program Files\Bricsys\BricsCAD V20 en_US\UserDataCache\Support\en_US

	 Working copy 	 C:\Users\<login>\AppData\Roaming\Bricsys\BricsCAD\V20x64\en_US\Support

The “original files” are the ones BricsCAD uses when you use the Windows Repair facility, as well as
when you click the Revert to Defaults button. The “working copies” are the ones that get modified
when you make changes using the Customize dialog box.

In Linux, the default.cui files are located in these folders:

	 Original file 		 /opt/bricsys/bricscad/V20/UserDataCache/Support/en_US

	 Working copy		 /home/<login>/Bricsys/BricsCAD/V20x64/en_US/Support

In MacOS, the default.cui files are stored in these folders:

	 Original file 		 /Applications/BricsCAD V20.app/Contents/MacOS/UserDataCache/Support/en_US

	 Working copy		 /Users/<login>/Library/Preferences/Bricsys/BricsCAD/V20x64/en_US/support

84    Customizing BricsCAD V20

The default.cui file has a different name on MacOS and Linux systems:

default(windows).cui 	

default(linux).cui	

default(mac).cui	

SEARCH FOR COMMANDS
BricsCAD has hundreds of commands, but they are not listed alphabetically in the Customize dialog
box’s Tools pane, unfortunately. The pane is a bit of a pain by listing the commands in groups of
related functions, such as “2D Constraints” and “Annotations.”

Guessing which description is for the ObjectScale command

Worse, the Tools pane does not use the actual command names, but command descriptions. You’ll
never find the ObjectScale command by scrolling through the Tools pane, because it is named “Add/
Delete Scales...”. Sigh. It can be a little bit painful to find the command (a.k.a. tool) you want.

So BricsCAD provides a search field to look for command names.

Searching for commands and descriptions

1.	 Enter a command name, and it jumps to the command name in the Tools pane. So, you can type “ob-

jectscale” and it goes to the “Add/Delete Scales” item.

2.	 Press Enter to find the next use of the command name.

Searching for the ObjectScale command

Disappointingly, the search for command names does not work in the Customize pane.

	 5  Introduction to the Customize Dialog Box    85

TABS OF THE CUSTOMIZE DIALOG BOX
The Customize dialog box has a row of tabs that access the primary user interface elements:

Tabs segregating the customizations for different areas of the user interface

ÐÐ Menus tab — customizes menus, sub-menus, and shortcut menus

ÐÐ Toolbars tab — customizes toolbars, buttons, flyouts, and icons

ÐÐ Ribbon tab — customizes tabs and panels

ÐÐ Keyboard tab — customizes keyboard shortcuts

ÐÐ Mouse tab — customized mouse buttons and double-click actions

ÐÐ Tablet tab — customizes digitizer buttons and tablet menus

ÐÐ Quad tab — customize the Quad cursor

ÐÐ Properties tab — customizes rollover properties

ÐÐ Workspace tab — customizes the look of workspaces

ÐÐ Aliases tab — customizes command abbreviations

ÐÐ Shell Commands tab — customizes commands that run programs external to BricsCAD

When you choose a tab, the Customize dialog box displays the associated customizable content, as
described fully in the following chapters.

SHORTCUT MENUS
When you right-click different areas of the Customize dialog box, a number of shortcut menus be-
come available. Different ones appear, depending on where you right-click in the dialog box. Some
of these are illustrated by the figure below.

Shortcut menu that appear when different elements are right-clicked

86    Customizing BricsCAD V20

Most of the options are self-explanatory, but there are two whose subtlety can get lost on me. These
are Insert and Append. The difference between them is as follows:

	 Append — adds the new item at the end of the list

	 Insert — places the new item before the selected item

The process of customizing toolbars and menus is an identical process; the only difference is that
menus have a few more options, such as check marks and gray text.

APPLY AND OK BUTTONS
When you make a change in the Customize dialog box, BricsCAD highlights it, turning the change
to boldfaced text, such as for the Title field shown below. This is handy as it reminds you what
has changed.

Changed parameters displaying boldface text

The boldfacing remains visible, however, only until the dialog box closes; the next time you open it,
the text again looks normal. You commit changes to the customization by clicking the OK button:

OK and Cancel buttons

Here’s what the buttons mean:

ÐÐ OK — applies the changes, and then exits the dialog box

ÐÐ Cancel — reverses (undoes) the changes, and then exits the dialog box

After you click OK, BricsCAD applies the changes to a copy of the default.cui file. This way, the
original default.cui file is kept untouched.

VIEWING CHANGES MADE TO CUSTOMIZE
You can see a list of the changes made to the Customize dialog box, just as with the Settings dialog
box. To see them, click the Manage Your Customizations button:

Accessing the changes to customizations

	 5  Introduction to the Customize Dialog Box    87

The Manage Customizations dialog box might initially look intimidating.

Managing customizations

The key understanding it is to use the color coding to figure out what is going on. Near the bottom
of the dialog box is a list of the colors and their meanings:

Color coding of changes to customizations

Color		 Meaning							

Green		 Element was added to the default customization set up
Blue		 Element was changed
Red		 Element was removed

So when you look at the left pane, you see in green the list of elements that changed, modified in
blue, and removed in red, if any.

List of changes by category

Here we see that the macrotext.cui and Macro Text elements were added, because they are shown
in green, while Content Browser and Properties were changed (blue).

The next step is to examine what changes were made to the blue elements. To do so, follow these setps:

1.	 Select an element that is shown in green, such as Content Browser.

2.	 Cast a glance at the right-hand pane, which lists the properties of the selected element.

Changes to an element shown in blue

88    Customizing BricsCAD V20

3.	 The properties that changed are shown in blue. In this case, the Display parameter was changed to “Yes.”

The right-hand panel is view-only; you cannot change anything here, other than to accept or reject
changes. To make a change, you have to go back to the Customizations dialog box.

ÐÐ To accept the change, do nothing

ÐÐ To reject the change, uncheck the element:

Check boxes accepting and rejecting changes to customization

Additional Management Options
The two options in the lower-left of the dialog box offer these possibilities:

Buttons at the bottom of the dialog box

	 Retain Customizations button is a shortcut to turn on all the check boxes next to elements. Should you

have turned off any of them, then clicking this button checking the boxes next to Content Browser,

Properties, and so on

	 Revert to Defaults button is a shortcut to turn off all checkboxes. BricsCAD pops up a tooltip to ask if

you are sure, because it will it copt the untouched default.cui file over the modified ones.

	
Erasing all your changes, and reverting to the original CUI content

	 Notice that the check boxes are cleared next to.

	 Show Positional Modifications check box toggles the display of elements that have only changed their

position in the Customize dialog box, a trivial change that otherwise clutters the content of this dialog box.

Toggling the display of position changes

	 When you turn it on, the dialog box looks like this:

All changes displayed, all of them

Click OK to exit the dialog box.

	 5  Introduction to the Customize Dialog Box    89

Using Partial Menus to Customize BricsCAD Correctly

The following seven chapters show you how to change the contents of the Customize dialog box to
modify the user interface. It is best, however, to make changes to a partial customization file, rather
than the main “default.cui”one for a couple of good reasons:

ÐÐ The primary default.cui file remains unchanged

ÐÐ Your customization can be shared with other BricsCAD users

SETTING UP A NEW PARTIAL MENU
Before carrying out changes in the Customization dialog box, create first a new partial customiza-
tion file in which you carry out your work. In the Customize dialog box, take the following steps:

1.	 From the File menu, choose Create New Partial CUI File.

Starting to create a new partial customization file

2. 	 Notice the Create a Customization File dialog box. Enter a name for the new .cui file, such as “MyCustomiza-

tion,” and then click Save.

Naming the new CUI file

3.	 Back in the Customize dialog box, notice the new item called “MYCUSTOMIZATION.” The same item appears

in each tab controlled by the .cui file. Below, I show the new item in the Menu, Ribbon, and Mouse tabs.

     
Left to right: MyCustomization item added to Menu, Ribbon, and Mouse tabs

90    Customizing BricsCAD V20

	 The other thing to notice is that the path to your new .cui file is listed down below in the parameters pane:

File parameter indicating path the to partial .cui file

4. 	 Now, to actually use the partial CUI file for customization. Here are the steps for writing, for instance, a new menu:

a.	 In the Customization dialog box, click the Menus tab.

b.	 Scroll down to the MyCustomization section.

c.	 Right-click Main Menus.

d.	 From the shortcut menu, choose Append Main Menu.

e.	 Carry on as described in the next chapter.

Naming the new menu

Sharing Customizations
By using partial customization files, you easily share customizations you make with others in your
office, your clients, and maybe even on the Bricsys eStore at https://www.bricsys.com/applications/!

Follow these steps:

1.	 Go to the folder that holds your partial customization file. To locate the folder, click on the name of the par-

tial item, then copy and paste the path from the File parameter:

a.	 Select all of the path by dragging the cursor across all of the text.

Selecting the text of the path

b.	 Use the Ctrl+C (Cmd+C on Macs) shortcut to copy the path to the clipboard. (You can try to right-click,

but no shortcut menu will appear.)

	 5  Introduction to the Customize Dialog Box    91

c.	 In the File Manager, paste the text into the address bar (Windows shown here):

Pasting the path into the address bar

d.	 At this point, one of two things can happen:

	 •  If you press Enter, then the .cui file will be opened by a text editor

	 •  If you press Backspace to erase the file name from the path, then the file manager goes to the folder

	 For this tutorial, press Backspace to erase the file name, such as “MyCustomization.cui”.

Erasing the file name from the path

e.	 Now press Enter. Notice that the file manager displays the contents of the folder.

Files displayed in the support folder

2.	 You can now copy the partial .cui file to a USB drive or to a central file server like Dropbox or attach it to an

email message or...

92    Customizing BricsCAD V20

3.	 To load a partial customization file, you can use the Customize dialog box’s File | Load Partial CUI File option,

or you can use the MenuLoad command. The dialog box is not exactly clearly laid out, so here are the steps

to follow:

a.	 Enter the MenuLoad command.

b. 	 Notice the Customization Group dialog box. Click the Browse button.

Clicking the Browse button in the Customization Groups dialog box

c.	 In the Choose a Customization File dialog box, navigate to the folder, drive, or network location that

holds the .cui file you want.

d.	 Click Open.

e.	 Back in the Customization Groups dialog box, click Load.

Loading the partial customization file into BricsCAD

f.	 Notice that the partial customization is added to the list of groups loaded into BricsCAD. Click Close to

exit the dialog box.

The added customization should now appear in the BricsCAD user interface. If it contains menus,
then the new menus will appear at the end of the menu bar. If ribbon tabs, then at the end of the
ribbon. And so on.

Removing Partial CUI Files
You use this same dialog box to unload partial customizations that you no longer want in the CAD
program. To do so, start the MenuLoad command, choose the Customization Group (such as “My
Preferences”), and then click Unload.

Customizing the Menu Bar
& Context Menus

Menus arrange commands in logical groups. The menu uses words primarily, with pic-
tures as an afterthought. The logical arrangement and use of words makes it easy to find specific
commands,more so than any other interface, especially for new users and for commands that we
rarely use.

In this chapter, you learn how to modify the menu bar’s menus and of context menus. You make
changes to menus via the Customize dialog box.

CHAPTER SUMMARY

The following topics are covered in this chapter:

•	 Modifying menu items

•	 Adding new menu items

•	 Adding new tools (commands)

•	 Creating context menus

•	 Sharing menus

•	 Importing menus from AutoCAD

CHAPTER 6

94    Customizing BricsCAD V20

QUICK SUMMARY OF MENU COMMANDS & VARIABLES

The following commands work with menus:

Menu — loads menu files into the program; supports the following file formats:

Format		 Meaning								

CUI 		 Standard menu file used by AutoCAD since release 2007, and BricsCAD since V8
CUIX 		 Packaged menu files used by AutoCAD since release 2010
MNU 		 Legacy menu files used by AutoCAD and AutoCAD LT prior to release 2008
MNS 		 LISP source code used by MNU files
ICM 		 IntelliCAD menu file used by BricsCAD V7 and earlier

MenuLoad — loads menu groups

MenuUnload — unloads menu groups

The following variables work with menus:

MenuBar — toggles the display of the menu bar

MenuName — reports the path and name of the current menu file

MODIFYING THE MENU BAR
BricsCAD lists nearly all of its commands on the menu, organizing them by categories. For instance,
the Draw menu is where you find most drawing commands; most file commands in the File menu.

Sometimes, however, you may want to change the content of menus or add a menu — something
that is common for third-party developers particularly.

In addition, you may wan to add and remove parts of menus, without affecting the original menu
structure. These parts of menus are known as partial menus. For example, Bricsys adds “Parametric”
as a partial menu to the Platinum edition of the software. It appears as another word on the menu bar.

Technical Note  The items shown in the Customize dialog box reflect the contents of default.cui and other
customization files. As you make changes in the dialog box, BricsCAD records the changes in the appropri-
ate .cui or .pgp file, and then adjusts the looks and actions in the user interface of BricsCAD.

	 6  Customizing the Menu Bar & Context Menus    95

Touring the Menu Tab
Menu customization takes place in the Customize dialog box. Enter the Customize command or
Cui alias at the ‘:’ command prompt, or else right-click any toolbar and then select Customize.

Notice the Customize dialog box. If necessary, click the Menus tab.

Customize dialog box showing the Menus tab

On the left side you see the Main Menus pane. The names, such as File, Edit, and through to Help,
represent the default menus available in BricsCAD. You can change nearly all of them, naturally.

To see the menus actually displayed by BricsCAD at this moment, however, you need to switch to
the Workspace tab, because the purpose of the Menus tab is to define menus; the Workspaces tab
determines which menus are seen on the menu bar:

1.	 Click the Workspaces tab.

2,	 Under the Drafting node, open the Menus node, and there is the list of active menu items.

Workspaces tab showing the menus of the Drafting workspace

It matches what you see on the menu bar, in the same order. Shown here is the menu bar from the
“Drafting” workspace. The menu bar will probably change when you switch to another workspace.

Menu bar for Drafting workspace

96    Customizing BricsCAD V20

QUICK SUMMARY OF MENU PARAMETERS

The look of every menu item is defined by parameters found in the Customize dialog box’s Menus tab. The position of
menus, submenus, menu items, and separators is defined by their position in the dialog box.

Here is the meaning of the parameters:

Title — label that appears in the menu. The text is displayed literally, but other characters and metacharac-
ters can be employed:

•  ... (ellipsis) means the command opens a dialog box

•  & (metacharacter) underlines the character following; used for keyboard shortcuts in conjunction
with the Alt key

Diesel — code written in Diesel programming code

Tool ID — identifier assigned to the menu item by BricsCAD; do not adjust this ID

Help —sentence of text displayed on the status bar when you pause the cursor over the menu item

Command — macro to be executed when you click the button; the macro can consist of command names
or aliases, option words, Diesel, and LISP code

Image — name of the bitmap (a.k.a. picture or icon) displayed to the left of the menu item; the image is
changed by clicking the ... button that appears when this parameter is selected.

	 6  Customizing the Menu Bar & Context Menus    97

Opening and Closing Nodes
Notice that each menu title has a next to it. For instance, click next to File to reveal the items
in the File dropdown menu. The items under File match the names you see in the File menu, as
illustrated below.

  
Left: File menu tree displayed by the Customize dialog box; right: Identical menu items in the File menu.

Gray Dots and Separator Lines
Notice that there are gray dots that prefix items in the dialog box. These dots indicate “container”
items, menu items which literally contain other items. Here are examples:

 BRICSCAD is the name of the menu group. It contains Main Menus (the items seen on the menu bar) and Con-

text Menus (the shortcut menus that appear when you right-click objects.)

	 Main Menus contains the items that appear on the menu bar.

		 File is the name of the first menu to appear along the menu bar, and it contains file-related commands.

The rows of dashes “-----” indicates a separator bar, the gray line that separates groups of menu
items. See figure above.

UNDERSTANDING MENU TITLE CONVENTIONS
Menu names employ special characters to define conventions. To see what they mean, choose the
New command and then look at the bottom part of the dialog box — the Menu Item pane.

Menu Item pane showing parameter fields

98    Customizing BricsCAD V20

The Title field contains the word “New” along with several characters, which I highlighted below
in blue boldface:
	 &New...

Let’s take a look at the meaning.

Keyboard Shortcut - &
The ampersand (&) is placed in front of the keyboard shortcut letter — N in this case (&N). This
causes the letter N to be shown underlined in the menu when you press the Alt key.

Keyboard shortcut letters allow you to access the menu without a mouse, just from the keyboard.
To do so, you hold down the Alt key and then choose the underlined letters in the menus. For ex-
ample, to access the New command in the menu, follow these steps:

1.	 Press the Alt key. Notice each menu name on the menu bar has one letter underlined, such as File.

Underlined letters on menu bar

2.	 To access the File menu, press F on the keyboard (for File). Notice now that items in the menu also have

underlined names, such as New and New Wizard.

Underlined letters in File menu

3.	 To access the New command, press N on the keyboard (for New).

The convention is that the first letter should be underlined for mnemonic purposes. For example,
New, Open, and Save each have the first letter underlined.

When two names in a menu start with the same letter, however, then the second name has to have
a different letter underlined. For example, New has N underlined, and so New Wizard is given Z.

Dialog Box - ...
The ellipsis (...) indicates that the command opens a dialog box. Note that New... displays a dia-
log box, whereas Save does not. By itself, the ellipsis does nothing; it is merely a user interface
convention. This means that it’s your job to add the ellipsis when you know a command will open
that dialog box.

Menu Titles
The name of a menu item can be the same as the command it operates — or it can be different. In
most cases, the menu title should be the same as the command it carries out. For instance, selecting
the New... item causes BricsCAD to executes the New command.

	 6  Customizing the Menu Bar & Context Menus    99

When the command name is somewhat cryptic, however, then it makes sense to switch to a descrip-
tive title, such as using “Polyline” for the PLine command.

COMMANDS USE MACROS
Macros are the programming code behind menu picks. As I noted above, choosing File | New ex-
ecutes the New command. In the Customize dialog box’s Menu Item pane, the command is shown
as ^c^c_new in the Command field.

Macro being shown in the Command field

TIPS  You can type commands, options, and metacharacters directly into the Command text box.
As an alternative, you can select commands from the Available Tools pane, and then click Insert Tool. The
advantage to this alternative approach is that BricsCAD automatically adds the ^C and _ metacharacters
for you.

Like titles, macros make use of metacharacters. The macro syntax has the following meaning:

Cancel - ^c
The ̂ c metacharacter means “cancel.” The caret (̂) is the equivalent of the Ctrl key; together with
C, ^c is the same as pressing the Esc key to cancel a command. The convention is to start (almost)
every macro with two ^c so that nested commands are cancelled.

Transparent - '
You do not prefix macros with ̂ c if the command is to be operated transparently, such as '_Redraw.
The apostrophe metacharacter (') means the command can be used during another command.
Not all BricsCAD commands are transparent.

Internationalize - _
The underscore (_) “internationalizes” the command. BricsCAD is available in a variety of (human)
languages. By prefixing commands with the underscore, the command word is understood, even if
it is used by the Spanish or German releases of BricsCAD.

The PromptOptionTranslateKeywords variable toggles the use of international commands. When
off, the underscore (_) prefix is not needed for command input; default = on.

Enter - ;
The semicolon (;) is equivalent to pressing the Enter key. For example, the macro for the View |
Zoom | Zoom In menu item looks like this:
	 '_zoom;2x

In this macro, the Zoom command accesses its 2x option to zoom into the drawing. You typically
use the semicolon to separate commands from options.

100    Customizing BricsCAD V20

The convention is to not include a semicolon at the end of the macro, because BricsCAD automati-
cally adds the Enter for you. If, however, the macro needs to end with two or more Enters, then
you do need to supply the two or three semi-colons, such as ;; and ;;;.

Pause - \
The backslash (\) pauses the macro for user input, so that you can pick a point or select an entity.
In the macro below, BricsCAD pauses twice, once for each backslash. (I show commands and op-
tions in blue, while pauses for user input are in cyan.)
	 ^c^c_dimlinear;_rotated

This is how the DimLinear command appears in the command bar:
	 : dimlinear
	 ENTER to select entity/<Origin of first extension line>: (User picks first point.)
	 Origin of second extension line: (User picks second point.)
	 Angle/Text/Orientation of dimension line: Horizontal/Vertical/Rotated: _ROTATED
	 Angle of dimension line <0>: (And so on.)

Here is how the macro works:

1.	 The ^c^c sequence cancels any existing command.

2.	 The DimLinear command begins.

3.	 The backslash metacharacter forces the macro to wait for input from the user, such as one of these:

ÐÐ The user picks a point on the screen

ÐÐ The user enters a value at the keyboard, and then presses Enter

4.	 The second backslash forces the macro to wait at the ‘Origin of second extension line’ prompt for the

user to react.

5.	 The macro executes the Rotated option.

EDITING THE HELP STRING
When you change the purpose of a menu item, then you may need to change the text of the help
string as well. The help string is displayed on the status bar when the user selects the menu item.

Help text displayed on the status bar

You edit the text in the Help String textbox.

Help text specified in the Customize dialog box

	 6  Customizing the Menu Bar & Context Menus    101

Tutorial: Adding Menu Items

You can add new items to menus by right-clicking an existing menu item in the Customize dialog
box, and then choosing an option from the shortcut menu. The shortcut menu allows you to create
new menus, add commands and sub-menus to existing menus, and add separator bars.

In this tutorial, you add the CloseAll command to the File menu; it will be located after the Close
item. The CloseAll command closes all open drawings.

1.	 With the Cui alias, open the Customize dialog box, and then choose the Menus tab.

2.	 In the Main Menus pane, open the File item.

3.	 Find the Close item. Below it is a ----- (separator) item.

4.	 Right-click the separator to place the new item before it. Notice that BricsCAD displays a shortcut menu.

Adding an item to the menu by inserting it

5.	 To add a the new menu item above the currently-selected one, choose Insert Item. Notice the Add Menu

Item dialog box.

Add New Item dialog box

	 This dialog box lists all commands available in BricsCAD — just like that Available Tools pane. (I’m not sure

why there’s that duplication.) The dialog box lets you select existing commands and create new ones.

Historical Note  Earlier releases of BricsCAD had an Append Item option, which added the new item to the
end of the menu structure. It didn’t make much sense, and was subsequently removed.

102    Customizing BricsCAD V20

6.	 In the dialog box, choose the Select Available Tool option. It lets you pick one of BricsCAD’s built-in com-

mands. (The other option, Create New Tool, is for creating new commands, and is described later.)

Choosing Select Available Tool option

7.	 Under the list of Available Tools, open the File container, and then choose Close All.

Choosing ‘Close All’ from the File section

	 At the top of the dialog box, notice that BricsCAD has filled in most of the parameters for you, such as Title,

Help, and so on. They are, however, grayed out; if you wish to edit these values, you need to wait until you

are back in the Customize dialog box.

Grayed-out parameters

8.	 Click OK. Notice that the Close All command is added to the list under Close.

Close All command added to the File menu

	 6  Customizing the Menu Bar & Context Menus    103

9.	 To ensure the new command works, follow these steps:

a.	 Close the Customize dialog box by clicking OK.

b.	 Choose the File menu. Notice that the Close All item has been added.

Close All command appearing in the File menu

c.	 Click Close All. Does it work correctly? It should prompt you to save all open drawings that have changed

since being loaded.

TIP  Not sure which commands can be added to menus? Peruse the list in the Customize dialog box found
under Available Tools. It lists all commands found in BricsCAD, sorted by menu order.

The Available Tools listing also allows you to add your own commands, which can be constructed from
other commands or from LISP routines.

TUTORIAL: DELETING MENU ITEMS
To delete a menu item, select it, and then right-click. You can delete individual menu items, as well
as submenus and entire menus.

1.	 From the shortcut menu, choose Delete.

Choosing Delete from the shortcut menu

2.	 BricsCAD asks if you really want to do this. Click Yes.

Confirming the item should be erased

104    Customizing BricsCAD V20

Did you make a horrible mistake? There is no undo button. Instead, click the Revert to Defaults
button to return the menus to their fresh-out-of-the-box nature. This action, however, also undoes
all other changes you made, including those you may want to keep.

Revert to Defaults button in the Customize dialog box

Tutorial: Adding Tools to Menus

So far, you’ve seen how to add existing BricsCAD commands to menus and toolbars. You also make
“new” commands, which BricsCAD calls tools. These are not so much commands as reworkings
of existing commands — pieces of simple programming code that simulate commands — and are
known as “macros.” These are described in detail in the following chapter.

To show you how to create new tools, I’ll write a macro that saves the drawing and then starts the
Plot command. So, two commands combined into a single menu pick. The macro looks like this:
	 ^C^C_qsave;_plot

I’ll name the macro “Save’n Print” and add it to the File menu, like this:

1.	 In the Customize dialog box’s Menu tab, follow these steps:

a.	 Choose the File item.

b.	 Right-click Print.

Inserting an item

c.	 From the shortcut menu, choose Insert Item.

2.	 Notice the Add New Item dialog box. Select the Create New Tool option.

Creating a new tool (aka a new command)

	 6  Customizing the Menu Bar & Context Menus    105

3.	 Fill in parameters, as follows:

Parameter	 Entry				 Comment					

Toolbox		 File				 Adds the new command to the File category of
						 available tools
Title		 Save'n Print			 Name that appears in the File menu
Help		 Saves the drawing, and then		 Help text that appears on the status bar
		 starts the Plot command.
Command		 ^C^C_qsave;_plot			 Macro that cancels the current command, saves the
						 drawing, and then starts the Plot command
Image		 (leave blank)			 No images are needed for menus

	 When the parameters are filled in, the dialog box looks like this:

Parameters filled out for the new tool

	 Ignore the bottom half of the dialog box, the one that lists all commands.

4.	 Click OK. Back in the Customize dialog box, notice that the new tool is added to the File menu (on the left)

and to the list of Available Tools (on the right).

New tool added to the menu

	 In addition, the new set of parameters is shown in the Menu Item pane (at the bottom of the dialog box.)

You can edit the parameters here, just like with any other command.

5.	 Click OK.

6.	 Test the new item by selecting Save’n Print from the File menu.

Testing the new tool

106    Customizing BricsCAD V20

Context Menus

Context menus go by a number of names, such as “shortcut menu” or “right-click menu.” Whatever
the name, they are the menus that appear when you press the mouse’s right button — the action
known as “right-clicking.”

    

Left: Mouse highlighting right button; right: Example of a context menu

Different shortcut menus appear depending on where you right-click in BricsCAD: while drawing
or while editing or in the user interface.

As well, the menu that appears depends on whether you hold down the Shift and/or Ctrl keys
at the same time as right-clicking. The Menu tab’s Context Menu section defines the menus; the
Buttons tab defines some other right-click actions. (See Chapter 10).

You can customize the content of some context menus, though not all of them. Specifically

ÐÐ You can customize those that appear when you right-click inside the drawing area

ÐÐ You cannot change the menus that appear when you right-click outside of the drawing area, such as on the
status bar or a toolbar

TIP  If shortcut menus do not appear when you right-click the mouse, then you need to turn on several
related options in the Settings dialog box, like this:

a.  Enter the Settings command.
b.  In the Search field, enter “shortcut menus.”
c.  Turn on all options, as illustrated below.

	 6  Customizing the Menu Bar & Context Menus    107

TUTORIAL: CUSTOMIZING CONTEXT MENUS
Context menus are customized in the much same way as regular menus.

1.	 Open the Customize dialog box (Tools | Customize), and then choose the Menus tab.

2.	 In the left hand pane, scroll down until you reach Context Menus.

3.	 Click the + to open the Context Menus tree. Notice the menus represented there, as illustrated below.

Accessing the list of context menus in the Customize dialog box

Below is the context menu that is displayed when you select a text object, and then right-click.
Commands specific to text editing are added by BricsCAD, which I have emphasized in blue.

Context menu when a text object is selected

108    Customizing BricsCAD V20

There are two types of context menus, full and partial:

	 Full menus — replace existing context menus, and all other items defined by the Customize dialog box.

	 Partial menus — add items to context menus, such as editing text, polylines, dimensions, and attributes.

Context Menu Name		 Menu Appears While Right-clicking When...			

Full Context Menus
Command				 A command is active
Default				 No command is active
Edit				 Object is selected, other than those listed below
Grips				 A hot (red) grip is active
Entity Snap			 The Shift key is held down

Partial Context Menus
OLE Object	 		 OLE object is selected
Text Object	 		 Text object is selected
Multiline Text Object			 Multi-line text object is selected
Block Object			 Block is selected (formerly named “Insert”)
Attribute Block Object	 	 Attributed is selected (formerly “Attribute Block Reference”)
XREF Object			 Externally-referenced drawing is selected
Polyline Object	 		 Old-style polyline is selected
LW Polyline Object	 		 New-style lightweight polyline is selected
Dimension Object	 		 Dimension is selected
Dimension Objects	 		 One or more dimensions are selected
Table Object			 Table is selected
Hatch Object			 Hatch pattern is selected
Multiple Leader Object		 Multi-line leader is selected
Attribution Definition Object		 Attribute definition is selected
Tolerance Object			 Tolerance is selected

The structure of the context menu’s definition is similar to that of regular menus. For instance,
items are listed in the order in which they appear, and there are submenus and separator lines.

  
Left: Context menus in Customize dialog box; right: Context menu appears when right-clicking during an active command

4.	 Adding commands is no different than before. Follow the previous two tutorials on adding existing com-

mands and new tools to context menus.

5.	 There is one thing different in creating new context menus: they are activated only when you right-click

something specific. BricsCAD has a list of these specific actions, also known as “reactors.”

	 Right-click Context Menus.

	 6  Customizing the Menu Bar & Context Menus    109

6.	 From the shortcut menu that appears, choose Append Context Menu.

Appending a context menu

 	 Here it gets complicated I find, for Bricsys redesigned the Add Context Menu dialog box to split options

into two streams.

Add Context Menu dialog box

The Use This Menu options are as follows:

ÐÐ As Regular Context Menu — this option accesses context menus that don’t involve entities, such as during
commands or right-clicked grips. There are just five of them. To choose one of them, click the Add Context
button. The Add Context Alias dialog box appears, as shown below.

Selection of non-entity shortcut menus

ÐÐ As Context Menu on Specific Entities — this option accesses context menus for entities, such as text and
polylines. Click the Add Entity Type(s) button to select one from the Add Entity Alias dialog box.

110    Customizing BricsCAD V20

  
Selection of shortcut menus specific to entities

7.	 For this tutorial, you create add a shortcut menu that involves viewport objects. Follow these steps:

a.	 Choose As Context Menu on Specific Entities.

b.	 Click Entity Type(s). Notice the Add Entity Alias dialog box.

c.	 Scroll down the list, and then choose Viewport. To get there quickly, press ‘v’.

Selecting the Viewport as the entity

d.	 Click OK to close the dialog box. Notice that “Object_Viewport” is added to the list of entities.

Viewport added as the specific entity

	 6  Customizing the Menu Bar & Context Menus    111

e.	 Add text to the Menu Title, such as “Viewport Borders”...

Naming the menu

	 ... and then click OK. Notice that BricsCAD adds the new menu to the list. It is, however, empty of com-

mands.

Viewport Borders item with no commands

8.	 Your job now is to populate the context menu with commands. Follow the instructions given earlier for regu-

lar menus. When done, click OK, and then test the new shortcut (context) menu.

TIP  The Custom Alias option is meant for third-party developers who create custom objects:

Tutorial: Sharing Menus

To share customized menus with other BricsCAD users, follow these steps:

1.	 Open the Customize dialog box (Customize), and then from the File menu, choose Save Main CUI File As.

Saving the menu as a CUI file

2.	 In the dialog box, enter a file name, and then click Save. BricsCAD saves the menu structure as a .cui file.

This action saves menus, toolbars, and so on in the same .cui file. It does not save aliases or shell commands,

because they are stored in a .pgp file, which you cannot access from the Customize dialog box.

112    Customizing BricsCAD V20

3.	 Copy the .cui file to the other computers via your network, email, or a USB thumbdrive.

4.	 On the other computer, import the .cui file through the Customize dialog box’s File menu.

Loading the CUI file as a partial menu

	 The menu presents you with two options:

ÐÐ Load Main CUI File — overwrites existing menus, toolbars, and keyboard shortcuts with the new file. (If you
did not mean to, use the Revert to Defaults button to correct the mistake.)

ÐÐ Load Partial CUI File — adds the contents of the file to the existing menus, toolbars, and so on.

IMPORTING AUTOCAD MENUS
The Customize dialog box’s File | Load items import three kinds of menu files into BricsCAD. Choose
them from the droplist in the Choose a Customization File dialog box:

	 CUI — standard menu file used by AutoCAD since release 2007, and BricsCAD since V8.

	 CUIX — packaged menu files used by AutoCAD since release 2010

	 MNU or MNS — legacy menu files used by AutoCAD and AutoCAD LT prior to release 2008.

	 ICM — IntelliCAD menu file used by BricsCAD V7 and earlier, as well as CAD systems based on IntelliCAD.

Careful: Although BricsCAD imports AutoCAD menu files effortlessly, menu picks sometimes do
not work because AutoCAD macros can contain macro code and metacharacters unsupported by
BricsCAD. For more information on writing macros for menus, see Chapter 8.

Customizing Toolbars
and Button Icons

The best way to customize commands in BricsCAD is through toolbars, in my opinion. Toolbars
give me single-click access to almost any command or group of commands (a.k.a. macros). Instead
of hunting through the ribbon (is hatching in the Draw or Tools tab) or trying to recall the exact
syntax of a typed command (was that Viewpoint or VPoint?), toolbars let us collect our most-used
commands into one or more convenient strips.

BricsCAD lets you customize these aspects of toolbars:

ÐÐ Name, default position, size, and default visibility of toolbars

ÐÐ Flyouts and separator bars

ÐÐ Titles, macros, help strings, and button images

All of these elements are handled by the Customize dialog box and working with them is explained
in this chapter.

CHAPTER SUMMARY

The following topics are covered in this chapter:

•	 Customizing the look of toolbars and buttons

•	 Creating new toolbars and flyouts

•	 Understanding controls and separators

CHAPTER 7

114    Customizing BricsCAD V20

QUICK SUMMARY OF TOOLBAR COMMANDS & VARIABLES

The following command works with toolbars:

Toolbar and -Toolbar — displays and hides toolbars by name, at the command line

The following variables work with toolbars:

ToolbarIconSize — changes the size of icons between regular, large, and extra large

MenuName — reports the path and name of the current menu file

Customizing the Look of Toolbars

There are two ways to customize toolbars in BricsCAD:

ÐÐ Change the look of toolbars

ÐÐ Change the macros executed by toolbar buttons

The first one is simpler, as it involves cosmetic changes, such as rearranging buttons, making new
icons, or defining new toolbars. The second way involves programming by (re)writing macros that
activate one or more commands when the toolbar button is clicked.

First, here is how to change the looks of toolbars.

REARRANGING TOOLBARS
The first time you start a fresh copy of BricsCAD in the toolbar workspace, you’ll see that it has
several toolbars docked along the edges of the drawing area. “Docked” means that when you move
the main BricsCAD window, docked toolbars move along with it.

Docked toolbars

Floating toolbar

Drag handle

Close toolbarDrag title bar

Docked and floating toolbars

Toolbars don’t have to be docked; they can float. When toolbars float, they are independent of the
BricsCAD window. When you move or resize the BricsCAD window, the floating toolbars remain
where they are.

	 7  Customizing Toolbars and Button Icons    115

Tutorial: Dragging and Moving Toolbars
Look closely at the left end of a toolbar that is docked. There you see a line of dots, shown in the
figure above. This is called the “drag handle.” By dragging the handle, you move the toolbar to an-
other location in the BricsCAD window or make it float.

You move floating toolbars by dragging them by their title bars. Floating toolbars can be relocated
to other edges of the drawing area — or left floating on the screen.

Here is how to move toolbars:

1.	 Position the cursor over the drag handle (line of dots).

2.	 Hold down the left mouse button, and then move the mouse.

3.	 Drag the toolbar away from the edge of the drawing area. Notice the thin, gray, rectangular outline. This is

called the dock indicator, as shown by the figure below.

Moving a docked toolbar

	 If you were to release the mouse button at this point, the toolbar would jump back to its docked position.

TIP  You prevent the toolbar from docking inadvertently by holding down the Ctrl key.

To prevent any toolbar or panel (palette) from moving, use the LockUI variable. Its options are listed in the
Settings dialog box, as follows:

4.	 Drag the toolbar a bit further, and notice that the rectangular outline becomes thicker. This is called the float

indicator.

Symbology for a floating toolbar

5.	 Let go of the mouse button now, and the toolbar floats. With the toolbar floating, you move it around by

dragging its title bar.

6.	 To dock the toolbar again, drag it by its title bar back against one edge of the drawing area, and then let go of

the mouse button.

116    Customizing BricsCAD V20

QUICK SUMMARY OF TOOLBAR PARAMETERS

The look and position of every toolbar is defined by an individual set of parameters defined by the Customize dialog
box. Here is an overview of the meaning of the parameters.

Xval

Button
Yval

Title

Rows (1)

Position
(floating)

Title — identifies the toolbar to the BricsCAD system, and appears on the title bar of the toolbar (you can
make the title any descriptive phrase that you like)

ID — BricsCAD assigned identification of the UI element; read-only (cannot be edited)

Alias — code name assigned by BricsCAD to identify this toolbar (although you can edit this value, I suggest
that this would be an unwise move)

Position — determines whether the toolbar is floating or docked at one of the four edges of the screen;
defines the default position when the toolbar is turned on; choose from Floating, Top, Bottom, Left, or Right
(this parameter had no effect at the time of writing this ebook)

Default Display (formerly Visible) — determines whether the toolbar is displayed or hidden when BricsCAD
starts up; choose from Add to Workspaces and Don’t Add to Workspaces

Rows — number of rows of a floating toolbar

Xval and Yval — x and y coordinates of a floating toolbar’s upper left corner, as measured from BricsCAD’s
upper left corner

	 7  Customizing Toolbars and Button Icons    117

TIP  Although not a toolbar, the Command Bar can also be made to float and resize. To float, drag the left
edge into the drawing area.

	
Once floating, you can move the Command Bar window by its title bar, and resize it by its edges — just like
a toolbar. To dock it again, drag the Command Bar window back into place.

To turn the Command Bar on and off, press Ctrl+9 (Cmd+9 on Mac).

Tutorial: Turning Toolbars On and Off
When you want to turn on a toolbar (or turn one off), then follow these steps:

1.	 Right-click any toolbar or the ribbon. Notice that a shortcut menu appears. (new in V20) This shortcut menu

was redesigned in BricsCAD V20.

Accessing UI elements from the shortcut menu

Panels — lists the names of panels

Panel Stacking — options for how multiple panels are displayed

Toolbars — lists the names of toolbars, illustrated at right

Toolbar size — change the size of icons between normal, large, and extra large

Workspace — select the workspace to make current

Menu Bar — toggles the menu bar on and off

Status bar — toggles the status bar

Clean Screen — toggles the clean screen state

(new in V20) Dark interface — toggles the theme between light and dark interface

Customize — opens the Customize dialog box

2.	 Click Toolbars and then click BRICSCAD. A submenu lists the names of toolbars, as illus-

trated at right. The check mark means that the toolbar associated with the name is

turned on (displayed):

ÐÐ Turn on a toolbar select its name from the submenu. Notice that the shortcut menu
disappears, and the toolbar appears.

ÐÐ Turn off a toolbar click a name with a check mark.

118    Customizing BricsCAD V20

TIPS	 You can turn on (or off) all toolbars at once through the Toolbar command, as follows:
	 : toolbar
	 Enter Toolbar name, or <ALL>: all
	 Enter an option [Show/Hide] <Show>: s
This command can also turn on and off individual toolbars, which is useful in macros and LISP routines.

When toolbars are floating, you can turn them off by clicking the red x in the upper right corner.

Making New Toolbars, and Modifying Them

You create new toolbars with any set of buttons of your choosing. You can change the content of
the toolbar by adding and removing buttons, controls, flyouts, and separator bars — as well as
designing your own icons. Let’s see what this means, and how it is done.

TUTORIAL: HOW TO CREATE A NEW TOOLBAR
For this tutorial, you make a toolbar with commands related to grouping, as BricsCAD doesn’t of-
fer such a toolbar. Groups are like unnamed blocks, but unlike blocks are easily editable. They are
made with the Group command.

In this tutorial you create a new toolbar named “Group” that holds the Group command.

List of toolbar
names

Parameters of the
selected toolbar

Available
commands to
add to toolbars

Three panes of customizing toolbars

1.	 Open the Customize dialog box. I find the quickest way to do this is to type the Cui alias at the command

prompt. Other methods include the following:

ÐÐ Right-click any toolbar, and then from the context menu, select Customize

ÐÐ From the Tools menu, select Customize

ÐÐ Enter the Customize command

	 7  Customizing Toolbars and Button Icons    119

2.	 When the Customize dialog box appears, choose the Toolbars tab. Notice the three panes and how they

relate to toolbar customization:

ÐÐ Toolbar pane — (on the left) lists the names of all toolbars in BricsCAD, sorted by the order in which they
were created. Within each toolbar name are names of commands, represented by icons.

ÐÐ Command pane — (on the right) lists the names of all commands available in BricsCAD, sorted by the
order in which they appear in dropdown menus. For instance, file-related commands are listed under File.

ÐÐ Parameters pane — (at the bottom) lists parameters controlling the look and function of toolbars and
their buttons. Here you edit the names, command macros, button images, help strings, and optional Diesel
code for each button.

3.	 To create the new toolbar, right-click the BRICSCAD node, and then choose Append toolbar from the short-

cut menu.

Appending a new toolbar

4.	 Notice the Add Toolbar dialog box.

Naming the new toolbar

	 For this tutorial, follow these steps:

	 a.	 Enter “Groups” for the name
	  Title: Groups

	 b.	 Click OK.

	 The name will appear on the title bar of floating toolbars — as well as identify the toolbar to BricsCAD. Notice

that BricsCAD adds the new (but empty) toolbar named Group to the end of the list. Also notice that it fills

out the Macro pane (in the lower half of the dialog box) with some preset parameters.

Newly created toolbar named “Groups”

120    Customizing BricsCAD V20

5.	 With the toolbar created, you now add buttons. The easiest (I find) way is to drag and drop buttons from the

Tools pane onto the new Groups node. Follow these steps:

a.	 Because the Groups command is listed under Tools, so scroll down to Tools.

Finding a command in a collection

b.	 Open the Tools group by clicking the + sign.

c.	 Choose the Groups... item.

Choosing the Group tool

d.	 Drag “Groups...” over to the Toolbars pane, and then deposit on the Groups toolbar.

Dragging the Group tool to the Groups toolbar

	 Notice that BricsCAD fills the Macro pane with preset parameters.

Preset parameters for the Group tool

6.	 Click OK. Notice the new toolbar appears.

New toolbar with its solitary Group button

	 (If you do not see the toolbar, you may need to turn it on by right-clicking another toolbar, and then choosing

BRICSCAD | Groups from the shortcut menu.)

7.	 Click the button to ensure it works correctly: the Group command should execute by displaying the Entity

Grouping dialog box.

	 7  Customizing Toolbars and Button Icons    121

Tutorial: Alternative Method
There is a second method for populating toolbars. It involves a dialog box, and is useful if you are
not fond of dragging’n dropping. This method replaces Step 5 from above:

1 - 4.	Follow the steps listed above.

 5.	 With the blank toolbar created, it’s time to add a button. Follow these steps:

a.	 In the Toolbars pane, right-click the Groups item.

b.	 From the shortcut menu, choose Append Tool.

Using the Append Tool alternative

c.	 Notice the Add Tool dialog box. Ensure that the Select Available Tool option is selected.

Choosing the Grouo tool

d.	 As before, you can find the Groups command under Tools, so scroll down to Tools, and then open the

Tools group by clicking the + sign.

122    Customizing BricsCAD V20

e.	 Choose Groups, and then click OK. Notice that BricsCAD fills the Macro pane with preset parameters.

Group command added to the Groups toolbar

Adding Controls, Flyouts, and Separators

Toolbars can contain more than just buttons. There are other elements available, including controls,
flyouts, and separators.

ABOUT CONTROLS (DROPLISTS)
Controls are better known as droplists . When the user clicks a control, BricsCAD drops a list of
options, such as names of colors or linetypes. You cannot customize controls.

Four controls are illustrated below, with the Color control showing its droplist. From left to right,
you see the controls for layers, colors, linetypes, and line weights.

Color control lists the names of colors

	 7  Customizing Toolbars and Button Icons    123

BricsCAD comes with these controls that you can add to and remove from toolbars:.

Color — droplist of default and recently-used colors

Layer — droplist of layer names and settings

Linetype — droplist of loaded linetypes

Lineweight — droplist of standard line weights

Text Style — droplist of text style names

Dimension Style — droplist of dimension style names

Plot Style — droplist of table plot style names; available only when table-based styles are enabled

Layer State — droplist of named layer states

Layer Filter — droplist of named layer filters

UCS — droplist of named UCSes

Perspective — slider bar that toggles perspective mode and then zoom in or out

Workspace — droplist of available workspace names

View — droplist of named views

MLeader Style — droplist of multileader style names

Visual Style — droplist of visual style names

Tutorial: Adding Controls (Droplists) to Toolbars
To add a control to a toolbar, follow these steps:

1.	 In the Customize dialog box’s Toolbars tab, right-click an existing toolbar name. For this tutorial, choose Groups.

2.	 In the shortcut menu, choose Append control.

Choosing the Append tool from the shortcut menu

3.	 Notice the Add Controls dialog box. Choose the name of a control, such as “Color,” and then click OK.

List of controls

124    Customizing BricsCAD V20

	 Notice that the control is added to the toolbar’s list.

Control added to toolbar

4.	 Click Apply to see the control in the actual toolbar.

Customizing Controls (Droplists)
You cannot create new controls, but you can customize one aspect of them: their width.

Pair of parameters for controls

Here is what the parameters mean:

	 Control — changes the control displayed by the toolbar. Click to choose another one from the drop list:

Changing the control

	 Width — specifies the width of the control. Click to enter a new width, which is measured in pixels. The

figure below shows how the width is measured on docked and floating toolbars. The width measurement

includes the gray line at either end of the white area.

Width of control
(pixels)

Width of control
(pixels)

Setting the width of the control

	 7  Customizing Toolbars and Button Icons    125

ABOUT FLYOUTS
Flyouts are sub-toolbars that “fly out” from a toolbar button, as illustrated below.

Flyout

Flyout indicator

Flyout, and flyout indicator

The presence of a flyout is indicated by the small black triangle in the lower right corner of a toolbar
button. Since flyouts are just toolbars within toolbars, you customize them kind of like a toolbar.

Tutorial: Adding Flyouts to Toolbars
To add flyouts, it’s a bit tricky. Here are the steps involved:

1.	 Right-click an existing toolbar name. For this tutorial, choose Group.

2.	 In the shortcut menu, choose Append Flyout.

Inserting a flyout

3.	 Notice the Append Flyout dialog box. Give the flyout a name, and then click OK. (For this tutorial, I use the

name “Flyout Sample.”)

Naming the new flyout

	 Notice that the flyout appears twice: once as a sub-toolbar and again as a toolbar in its own right.

Double appearance of the flyout

126    Customizing BricsCAD V20

4.	 You can now populate the flyout with tools in two place: the embedded Flyout Sample sub-toolbar or the

vestigial Flyout Sample toolbar. The difference between them is as follows:

	 Embedded sub-toolbar — you must use the Append tool; you cannot use the Insert tool nor can you

drag commands from the Commands pane

	 Vestigial toolbar — you can use the Insert tool and can drag commands from the Commands pane.

	 Any change you make to the vestigial toolbar appear in the embedded toolbar. I have no idea why Bricsys

does things this way, but there you have it. I recommend using the vestigial toolbar, because you can simply

drag’n drop. Drag tools from the Command pane onto the Flyout Sample toolbar.

Dragging and dropping commands into a toolbar

5.	 To add more commands to the flyout, repeat step 5. Notice that both toolbars contain the same list of com-

mands.

6. 	 Click OK to apply the changes and then view the changed toolbar.

The customized Groups toolbar now looks something like this:

Toolbar with a button, a flyout, and a control

Because flyouts are simply toolbars, you can customize them just as you do toolbars. You cannot,
unfortunately, simply drag existing toolbars on top of others to turn them into flyouts.

	 7  Customizing Toolbars and Button Icons    127

ABOUT SEPARATORS
Separators are those lines that separate groups of buttons, as shown below. These are handy for
visually segregating related groups of buttons. There is nothing to customize about separators:
either you add them to a toolbar, or you do not.

Separator bars
Separators on a toolbar

Tutorial: Adding Separators to Toolbars
To add a separator to a toolbar, follow these steps:

1.	 Open a toolbar by clicking the + button. For this tutorial, choose Groups.

2.	 Select a tool name, such as the Color control. The separator bar is added in front of the selected tool.

3.	 Right-click, and then choose Add separator.

Choosing to add a separator

	 Notice a row of dashes (------) is added to the Groups node, indicating the position of the separator bar.

Separator indicated by row of dashes

	 If you don’t like the position of the separator, drag it elsewhere.

4.	 On the toolbar itself, a vertical gray line appears. Click Apply to see the change to the toolbar.

Separator added to toolbar

That’s about as easy as it gets!

128    Customizing BricsCAD V20

REMOVING BUTTONS, RENAMING AND DELETING TOOLBARS
You can remove buttons, rename toolbars, and delete them. To perform these actions, open up the
Customize dialog box, go to the Toolbars tab, and then choose the toolbar you want to edit.

Tutorial: Removing Buttons and Toolbars
To remove a button from a toolbar:

1.	 Right-click a button’s name, and then choose Delete.

Deleting a toolbar button

2.	 When BricsCAD asks whether you are sure, choose Yes.

Answering Yes (or No)

3.	 Click Apply to see the toolbar with one fewer button.

The same procedure is used to delete toolbars: right-click a toolbar name, and then choose Delete
Toolbar.

Being cautious about deleting an entire toolbar

	 7  Customizing Toolbars and Button Icons    129

Tutorial: Renaming Toolbars and Buttons
You can change the names displayed by toolbars and buttons. To rename a toolbar, follow these steps:

1.	 Select a toolbar in the Customize dialog box.

2.	 In the Macro pane, choose the Title parameter.

3.	 Edit the name.

Renaming a toolbar

4.	 Click Apply to see the name change on the toolbar’s title bar, if it is a floating toolbar.

Toolbar sporting its new name

You rename buttons in the same manner: select a button in the Customize dialog box, and then
edit its Title parameter.

Renaming a button

The name appears in the tooltip when you hover the cursor over the button.

Customizing Buttons

Buttons are customized in a manner similar to that of toolbars. The parameters that can be changed
are described by the boxed text, above. To start customizing buttons, follow these steps:

1.	 Enter the Cui command to open the Customize dialog box, and then select the Toolbars tab.

2.	 Open any toolbar by clicking the + next to its name. For example, open Standard.

Selecting a button to customize

130    Customizing BricsCAD V20

3.	 Select a command name, such as QNew. Notice the button parameters that appear at the bottom of the

dialog box, such as Title and Diesel.

Parameters that can be modified on toolbar buttons

With the Customize dialog box ready to modify buttons, let’s go on to see what can be done in
regards to this.

MODIFYING BUTTON PARAMETERS
You can change the following button parameters:

	 Title — specifies the name displayed by the tooltip. The tooltip appears when you hover the cursor over the

toolbar button.

	 Help — specifies the help text displayed on the status bar. The text appears in the status bar, again when you

hover the cursor over the button.

	 Command — specifies macro executed by clicking the button. This macro can consist of a simple command

name, like line, or multiple command names within a lengthy series of instructions.

	 Image — specifies the picture (a.k.a icon) displayed by the button. You can use icons provided by Bricsys or

use your own.

I recommend that you leave Diesel and Tool ID fields alone. Diesel, because its functions are carried
out by the Command field; ToolID, because it’s best not muck about with how BricsCAD identifies
buttons internally.

SIZING BUTTONS

You can have three sizes of buttons on toolbars: regular, large, and extra-large. Larger buttons are
easier to see on very-high resolution monitors, but smaller ones let you see more toolbars at
a time. The ToolbarIconSize variable affects all buttons on every toolbar uniformly; it has no
impact on ribbon buttons.

•	 Regular: 16x16 pixels

•	 Large: 32x32 pixels

•	 Extra-large: 64x64 pixels

The easiest way to change the size is to right-click a UI element, and then choose
Toolbar Size.

	 7  Customizing Toolbars and Button Icons    131

Tutorial: Editing the Title Name and the Help String
To change the name displayed by the button’s tooltip, follow these steps:

1.	 Click the field next to the Title parameter.

Editing the Title parameter

2.	 Edit or replace the text.

3.	 Click Apply to make the change stick.

Follow the same steps to change the help text displayed by the status bar: Click the Help field, edit
the text, and then click Apply.

Editing the help text

Tutorial: Changing the Command Macro
To change the macro that is executed when you pick the toolbar button, follow these steps:

1.	 Click the field next to the Command parameter.

Editing the command’s macro

2.	 Enter a new macro. If all you want to is to execute a single command, then use this template:
	 ^c^c_command

	 Replace “command” with the command name of your choice. For example, to execute the PLine command,

then enter ^c^c_pline. (For details on writing macros, see the chapter on “Writing Macros and Diesel Code.”)

3.	 Click Apply.

TIPS  After you change a parameter, it is shown in boldface to remind you that it has changed. The bold-
facing goes away after you press Apply.

Click the Apply button to see the effect of changes you’ve made to the button(s).

Although it is not explicit, you can copy and paste text in the parameter fields, as follows:
	 •  To copy: select text, and then press Ctrl+C.
	 •  To paste: place cursor, and then press Ctrl+V.
Ctrl+X also works to cut text, as does Ctrl+Z for undo, Ctrl+Y for redo, Ctrl+A to select all text, and Del to
delete.

132    Customizing BricsCAD V20

Tutorial: Replacing Button Images
To change the picture displayed by the button, follow these steps:

1.	 Pick the field next to the Image parameter.

Accessing the button editor

2.	 Notice the button at the end of the field. Click it to access the Tool Image dialog box. This dialog box offers

four ways to access collections of pictures (or icons):

	 Builtin — lists images available within BricsCAD. Scroll through the list, choose an image, and then click OK.

Choosing an icon from those provided by BricsCAD

	 Bitmap file — selects an image on your computer. This takes two steps:

a.	 Choose the size:

	 • One Image File — standard size only (16x16 pixels)

	 • Small and Large Image Files — both standard and large (24x24 pixels).

b.  Click the button.

c.	 From the Tool Image dialog box, Chose choose a file in BMP (bitmap), GIF, JPEG, or PNG format. The im-

age is automatically resized to fit the area of the button.

Choosing an icon from a file

d.	 Click Open, and then repeat for the large image, if necessary.

e.	 Click OK .

	 7  Customizing Toolbars and Button Icons    133

	 Resource — chooses an image from a resource file. These .dll or .exe files are used by Windows to run pro-

grams, and often contain a small collection of icons. At time of writing this book, this option did not work,

and so all you can do is click Cancel.

Choosing an icon from a resource file, if any

	 None — removes the image from the button. In this case, the button is blank.

Specifying no icon for the button

BricsCAD does not have a built-in icon editor. Instead, you can use a raster editor like PaintShop
Pro to create images, and then use the Bitmap File option to load them into BricsCAD.

134    Customizing BricsCAD V20

Notes

Writing Macros
and Diesel Code

When you click a button or make a menu selection, BricsCAD behind the scenes executes a
macro. This is a series of one or more commands assigned to the button or menu item.

With the Customize command, you can change the macros that lie behind buttons, menu selections,
mouse clicks, and other actions. Toolbars, ribbons, and most other parts of the BricsCAD user in-
terface all use the same format for macros. This is good news for this reason:

When you learn to write a macro for one,
then you know how to write macros for all

There is just one difference, however: menus have more user interface options than the others, and
they so have more capabilities when it comes to macros.

Some macros use Diesel, a simplistic programming language. It is used for special effects, such
as toggling check marks in front of menu items. The coding used by Diesel is really, really arcane.
Fortunately, the same bits of Diesel code can be used over again, and so it is enough for you to
recognize what the code does.

CHAPTER SUMMARY

The following topics are covered in this chapter:

•	 Learning the macro syntax

•	 Writing macros specific to menus

•	 Coding with Diesel

•	 Cataloging Diesel functions

CHAPTER 8

136    Customizing BricsCAD V20

QUICK SUMMARY OF METACHARACTERS IN MACROS

Macros use command and option names, metacharacters, Diesel code, and LISP functions in menus, toolbars, and other
areas of the Customize dialog box. Metacharacters consist of punctuation that represents actions. Here are the metacha-
racters used by BricsCAD:

^— (carat) represents the Ctrl key. These following control-key combinations are valid in macros:

^B	 Toggles snap mode
^C	 Cancels the current command
^D	 Toggles coordinate format
^E	 Changes to the next isometric plane
^G	 Toggles the grid display
^O	 Toggles orthographic mode
^S	 Selects the entity under the cursor
^T	 Toggles tablet mode

	 ; — (semi-colon) represents the Enter key.

	 ' — (single quote) forces the use of commands in transparent mode.

	 _ — (underscore) forces the use of English versions of command names.

	 - — (dash) forces the use of command-line versions of commands.

	 \ — (backslash) pauses the macro for user input.

	 (— (open parenthesis) signals the start of a LISP function.

	 $(— signals the start of a Diesel statement.

) — (close parenthesis) signals the end of LISP functions and Diesel statements.

The following metacharacters are used only by menu macros:

Check mark
.! metacharacter

Underscore
& metacharacter

Separator line

	 $M — signals the start of a complex macro.

	 .! — displays a check mark, to indicate the toggle is turned on.

	 ~ — (tilde) grays out a menu item, to indicate it is not available.

	 & — (ampersand) signals the accelerator key, to access menu items with the Alt key.

	   8  Writing Macros and Diesel Codes    137

 In this chapter, you learn how to write macros, and then how to add more power to macros through
one-line programs written in Diesel.

Simple Macros

A simple macro consists of a single command, prefixed by some unusual-looking characters. For
instance, here is the macro attached to the Line button in Draw toolbar:
	 ^c^c_line

The exact same macro is used for toolbars and macros, as shown below by Line in the Draw menu:

A basic macro shown in the Command property

The ^c^c_ characters in the macro have the following meanings:

^c	 — is a control character. It imitates pressing Esc on the keyboard, canceling the command currently in prog-

ress. The carat symbol (^) alerts BricsCAD that the character following is a control character, and not part

of a command name or an alias.

	 (What does ‘c’ have to do with the Esc key? Back in the 1980s and 1990s, when desktop computers used

MS-DOS for their operating system, users pressed Ctrl+C to cancel a command; the C was short for “cancel.”

With Windows, Microsoft changed the meaning of Ctrl+C to mean “copy to Clipboard,” but in macros, it

continues to mean “cancel.”)

^c^c — most macros start with two ^cs because many BricsCAD commands are two levels deep. Extra ^cs do

no harm; indeed, older releases of BricsCAD prefixed all macros with three ^cs. to handle commands like

PEdit, whose options can go three levels deep.

	 When a macro is transparent (starts with the ' apostrophe), then you can’t prefix it with the Cancel charac-

ters; more on this later in this section.

_ — the underscore is a convention that internationalizes the command. Prefixing the command name with the

underscore ensures the English-language version of the command always works, whether used with a Ger-

man, Japanese, or Spanish versions of BricsCAD.

line — is the name of the command to be executed. In macros, you type BricsCAD commands and their options

exactly the way you would type them on the keyboard at the ‘:’ command prompt.

	 Nothing is needed at the end to terminate the command. BricsCAD automatically does the “pressing Enter”

for you.

138    Customizing BricsCAD V20

TIP  Macros are case-insensitive. This means that the characters in macros can be upper or lowercase, or
mixed case; it matters not to BricsCAD. The following have the same effect:
	 ^C^_LINE
	 ^c^c_line
	 ^C^c_Line.

TRANSPARENT COMMANDS IN MACROS
Most macros start by cancelling existing commands. But sometimes you want to use a command
transparently; i.e, during another command. For example, you might want to zoom into the draw-
ing during a command.

Transparent commands are indicated by the apostrophe prefix ('), like this:
	 '_zoom

Dashed Commands
A few commands in BricsCAD start with a dash; these are ones that operate at the command line,
instead of displaying a dialog box.

One example is the View command: View displays a dialog box, while -View display prompts at the
command line. To force View to display its prompts at the command line, enter this:
^c^c_-view

OPTIONS & USER INPUT
Macro can specify commands options, as well as wait for input from users.

Options
Options are just like commands; you just write out the option name. The only thing to watch is that
you should use semicolons (;) to separate options from commands and each other.

Here is an example with the Layout command and its New option:
^c^c_layout;_new

Notice that options can also receive the underscore (_) prefix to internationalize them.

You can spell out the name of the option in full (_new) or use the approved abbreviation, such as
_n). Recall that approved abbreviations are indicated by capitalized letters in the option names
displayed at the command prompt, such as these:
: layout
Enter layout option [Copy/Delete/New/Rename/Set/SAve/Template/? to list] <Set>: n

You can use “n” for the New option and “s” for the Set option, but must use “sa” for the Save option.

It is perfectly valid to use “?” (as in “? to list”) in macros, but you cannot use spaces, because these
are interpreted as pressing Enter.

	   8  Writing Macros and Diesel Codes    139

Pausing for User Input
To allow users to input data, macros employ the backslash character (\). This forces the macro to
wait for the user to do something. Commonly, the expected action is for the user to input one of these:

ÐÐ Pick a point on the screen, or

ÐÐ Enter x,y-coordinates at the keyboard

The macro waits for the user to enter the center point of the circle; the circle is always 1 unit in radius:
^C^C_circle;\1

When you execute this macro, such as from a menu pick or toolbar button, the following occurs at
the command line:

Command Prompt						 Comments			

: _circle							 Macro begins the command

2Point/.../<Center of circle>: (User picks a point)	 	 Macro waits for user to pick a
								 point in the drawing (or enter
								 a coordinate pair)

Diameter/<Radius> <5>: 1					 Macro enters 1 (for the radius)
								 and then ends the command

But the expected action can be other things, too, depending on the command. Options in the Rotate
command expect an angle (the user picks two points on the screen, or enters a single number), in
the Text command a line of text (the user enters one or more words), and so on.

When a command expects more than one input from the user, you can type several back slashes
in a row, as you see next.

Combining Options and Pauses
Options and pauses can be combined together. In this example, the macro draws an ellipse after
the user specifies a center point and the rotation angle:
	 ^c^c_ellipse;_c;_r

Here is what the code means:

	 ^c^c cancel any other command that might be active at the time.

	 Ellipse is the name of the command, while the underscore (_) prefix internationalizes it.

	 ; (semicolon) is just like pressing Enter or the spacebar on the keyboard.

	 C is the Ellipse command’s Center option. Just as you enter an abbreviation for options at the keyboard, so

too you can use the same abbreviations in macros — or you can spell out the entire option name, such as

“Center.”

	 \ (backslash) pauses the macro, waiting for the user. Two backlashes in a row means that the macro expects

the user to make two picks.

	 R is short for the Ellipse command’s Radius option.

140    Customizing BricsCAD V20

Let’s look again at the macro, this time in parallel with the command’s prompts:

Macro			 Command Prompt						

^C^C		 	 (Press Esc, Esc.)

_ellipse;		 : ellipse

;			 (Press Enter.)

_C;			 Arc/Center/<First end of ellipse axis>: c (Press Enter.)

\			 Center of ellipse: (Pick point.)

\			 Endpoint of axis: (Pick point.)

_R			 Rotation/<Other axis>: r (Press Enter.)

			 Rotation around major axis: (Pick point.)

A final semicolon (i.e. Enter) and backslash (i.e. pause for user input) are not needed at the end of
the macro, because the macro no longer needs to wait for the user.

TIPS  You can include aliases, Diesel code, and LISP routines in toolbar and menu macros.

There is no “debugger” for macros, and so you have to figure out the errors on your own.

Other Control Keys
You’ve met ̂ C, the control key for cancelling a command. BricsCAD also supports all these control-
key combinations using the ^-prefix:

Control Key		 Meaning				 Command Equivalent	

^B	 		 Toggle snap mode			 _’snap;_t
^C	 		 Cancel command			 Press Esc	
^D			 Toggle coordinates			 _’coordinate;_t
^E			 Change isometric plane		 _’isoplane
^G	 		 Toggle grid display			 _’grid;_t
^O			 Toggle orthographic mode		 _’orthogonal;_t
^S			 Selects the entity under the cursor	...
^T	 		 Toggle tablet mode			 _’tablet;_t

	

Think of these control-key combos as abbreviations, like aliases. You can use these control keys as
shortcuts in macros all by themselves, like this:

Macro consisting solely of a Ctrl-key macro

	   8  Writing Macros and Diesel Codes    141

MENU-SPECIFIC METACHARACTERS
Menus use additional metacharacters that are not needed by toolbars. Here is the complete set:

Metacharacter		 Meaning								

.!			 Displays a check mark to indicate the toggle is turned on.
~	 (tilde)	 	 Grays-out menu item to indicate it is not available.
&	 (ampersand)	 Enables accelerator key to access menu item from the keyboard.

Other Metacharacters
_ 	 (underscore)	 Internationalizes the command or option.
‘ 	 (quote)	 	 Starts a command transparently.
\	 (backslash)	 Waits for user input.
;	 (semicolon)	 Equivalent to pressing Enter or the spacebar.
$(Starts a Diesel statement.
(Starts a LISP routine.

TIP	 Some of AutoCAD’s metacharacters don’t work, such as [] , + , \t , and *.

Diesel Coding

Sometimes you need additional code to help macro perform decisions. For example, the View menu
lists three items that have check marks beside them: Command Bar, Status Bar, and Scroll Bars.
When the three bars are displayed, the check marks appear in the menu; when not displayed, the
check marks are not shown.

  
Left: Check marks indicate UI elements are turned on.

Right: No check marks mean the elements are turned off.

It is easy to get a menu to display the check mark: just add the !. metacharacter to the macro. It is
difficult, however, to get BricsCAD to do the actual turning on and off, because the display of check
marks is a logical function. It should appear in the menu only when the UI element is turned on.
This is where Diesel comes in.

ABOUT DIESEL
Diesel has two purposes in macros: one is for making decisions, and the other is for customizing
the status bar. The name is short for “direct interactively evaluated string expression language,”
and its programming logic is as clear as the acronym’s meaning — as clear as mud.

142    Customizing BricsCAD V20

QUICK SUMMARY OF DIESEL FUNCTIONS

The following Diesel functions are supported by BricsCAD:

MATH FUNCTIONS

+			 Addition
-			 Subtraction
*			 Multiplication
/			 Division

LOGIC FUNCTIONS

=			 Equal
<			 Less than
>			 Greater than
!=			 Not equal
<=			 Less than or equal
>=			 Greater than or equal
and			 Logical bitwise AND
eq			 Determines if all items are equal
if			 If-then
or			 Logical bitwise OR
xor			 Logical bitwise XOR

NUMERIC CONVERSION FUNCTION

fix			 Truncates real numbers to rounded-down integers
angtos		 Formats angles (short for angle to string)
rtos			 Formats numbers with units (short for real to string)

STRING (TEXT) FUNCTIONS

index		 Extracts one element from a comma-separated series
nth 			 Extracts the nth element from one or more items
strlen		 Returns the number of characters in the string (short for string length)
substr		 Returns a portion of a string (short for sub string)
upper		 Converts a text string to uppercase characters

 SYSTEM FUNCTIONS

edtime		 Formats the system time.
eval			 Passes a string to Diesel.
getenv		 Gets the value of an environment variable.
getvar		 Gets the value of a system variable.
linelen		 Returns the length of the display

	   8  Writing Macros and Diesel Codes    143

Diesel has an unusual format for a macro language. Every function begins with a dollar sign and a
parenthesis, like this:
	 $(function,variable)

The purpose of the initial $-sign is to alert BricsCAD that a Diesel expression is on its way, just as
the (symbol alerts BricsCAD that a LISP expression is coming up. The $ symbol is often used by
programmers to indicate a string of text.

The opening and closing parentheses signal the beginning and end of the Diesel function. Func-
tions can be nested, where one Diesel function is inside the parentheses of a second one. You use
nesting to have one function evaluate the result of the second one. Diesel is completely reentrant.

Because Diesel programs consist of just one line — at most! — nesting is the only way to carry out
more than one function during a macro.

For some functions, Diesel can operate on as many as nine values at a time, such as adding several
values together. The closing parenthesis alerts Diesel to the end of the list of values.

BricsCAD provides a catalog of 26 Diesel functions. Most of them use at least one variable, some
as many as nine. A comma always separates the function name from its variable(s), as well as the
variables themselves. Diesel tolerates no spaces.

Diesel functions can be run at the command line, in toolbar and menu macros, in LISP code, and in
other areas of BricsCAD, such as the status bar. To work in the status bar, you use the ModeMacro
command, followed by the Diesel expression.

(John Walker, the Autodesk programmer who created Diesel, notes that additional functions, such
as setvar and time, could be implemented but never were. He provides instructions for accessing
the Diesel source code and recompiling it with other functions at http://www.fourmilab.ch/diesel/.
He named Diesel as “Dumb Interpretively Executed String Expression Language.”)

HOW TO TOGGLE CHECK MARKS
BricsCAD primarily uses Diesel to toggle check marks in menus:

ÐÐ Check mark means the option is turned on

ÐÐ No check mark means the option is turned off

To switch between the two states, BricsCAD uses the .! metacharacter in code that looks like this:
	 $(if,$(=,$(getvar,FILLMODE),0),,!.)

It may look weird, but don’t worry: you don’t need to know how to write that code from scratch,
ever. All you need to do is: (a) copy and paste it, and then (b) change just one word (FILLMODE,
in this case).

Here is what the Diesel code says: “If the value of FillMode equals 0, display nothing; otherwise, dis-
play the check mark.” BricsCAD uses the .! metacharacter to instruct menus to display check marks.

144    Customizing BricsCAD V20

Here is another way of looking at the Diesel code. This is called “parsing,” where each line of code
is given its own, indented line:
$(if,					 If...
  $(=,					 ...equal to
   $(getvar,				 ...get the value of
    FILLMODE),			 ...system variable FillMode
   0)					 ... (equal to) zero
   ,					 ... then display nothing.
   ,!.					 Otherwise, display the check mark.
)					 End of diesel statement.

Here is what the code does: it checks the value in system variable FillMode. If the value is 0, then
the check mark is not displayed; if the value is 1, then the check mark is displayed.

To use this code for other menu items, copy and paste the text, and then change the name of the
system variable. For example, to add a check mark toggle to the Limits command, use LimCheck
system variable. Simply copy, paste, and edit the Diesel string to make it look like this:
	 $(if,$(=,$(getvar,LIMCHECK),0),,!.)

Reuse the same code for the Grid command, which uses the GridMode system variable:
	 $(if,$(=,$(getvar,GRIDMODE),0),,!.)

So, you don’t really need to know what the Diesel code does; you just need to know which word
to change!

Toggling Grayouts
To toggle the color of menu text between black and gray, you use the tilde (~) character:

ÐÐ Black text means the menu item is available

ÐÐ Gray text means the menu item is unavailable

For example, BricsCAD uses the tilde in Diesel code to check for valid sublicenses. If you’ve paid for
the Pro and Platinum versions of BricsCAD, then you get access to solids modeling and Visual Basic
programming. If not, then no. (Bricsys pays to license the ACIS and VBA technology from Spatial
Technology and Microsoft, hence the higher cost of the Pro and Platinum versions.)

The following code is used to check for licenses:
	 $(if,$(=,$(and,$(getvar,LICFLAGS),0x1),0),~,)

If nonzero, then the submenu is available for your use. If zero, then the menus are grayed out. The
read-only LicFlags system variable contains a bitcode that signals which licenses are valid:

LicFlags		 Meaning								

1			 Microsoft license for Visual Basic programming
2			 Spatial license for 3D solid modeling and editing, ACIS import and export, regions
4			 Bricsys license for Platinum edition

	   8  Writing Macros and Diesel Codes    145

REPORTING VALUES OF SYSTEM VARIABLES
Being the hackers, er, customizers that we are, we won’t stop at toggling mere check marks or text
colors. We’ve figured out how to use Diesel to do more.

For instance, to display the values of system variables, we can use the $(getvar function. This Diesel
function gets the value of a system variable, and then displays it in the menu.

In the following tutorial, you change the Elevation menu item so that it reports its current value.
(Elevation is found in the Settings menu.) The figures below illustrate how the menu looks before
and after this tutorial. In the “after” picture, Elevation reports its current value of 10.9000:

   
Left: The default version of Elevation in the Settings menu; right: Elevation modified to show value, using Diesel code

To modify a menu item so that it reports values, follow these steps:

1.	 Enter the Cui alias, and then choose the Menus tab.

2.	 Expand the Settings node, and then select the Elevation item.

Elevation command in the Customize dialog box

3.	 Shift your attention to the Menu Item area, the macro pane at the bottom of the dialog box. Click the field

next to Diesel, and then enter the following code:
	 $(getvar,elevation)

146    Customizing BricsCAD V20

	 This piece of Diesel code gets the value of the Elevation system variable, and then displays it.

Adding Diesel code to the macro

4.	 Click OK to apply the change and exit the Customize dialog box.

5.	 Choose the Settings menu, and then notice the change to the Elevation item. It will probably be prefixed

with 0.0000 — the current elevation.

6.	 Choose Elevation to run the command, and then enter a different value, like 1.23:
	 : elevation
	 Enter current new value for ELEVATION <0.0000>: 1.23

7.	 Choose the Settings menu again. Notice that the value next to Elevation has changed to 1.2300.

Actual elevation value added to menu

You’ve made the menu more useful by customizing the display of the Elevation item! But there is
a small problem with the display: it doesn’t look very good, with the “1.2300” jammed up against
the word “Elevation.”

In this next tutorial, you fix the spacing problem:

1.	 Reenter the Cui alias, and then return to the Settings | Elevation item.

2.	 Edit the field next to Title so that it changes from
	 Ele&vation

	 to this:
	 = Ele&vation

	 Just add a space, equals sign, and another space.

Enhancing the macro

3.	 Click OK to exit, and try the Settings menu again. That looks better!

Enhanced look of the menu item

The number will always appear in front of the word. The reason? Recall that the Diesel code was
meant to toggle check marks, which appear in front of words. Since displaying values is a hack,
we are stuck with the backward looking “1.2300 = Elevation.” There is, however, a workaround, as
described later under “How to Deal with Two Sysvars.”

	   8  Writing Macros and Diesel Codes    147

APPLYING VARIABLES EVERYWHERE
You can apply the same sort of change to other items in the Settings menu. Here are the names of
the system variables for some of them:

Settings Menu		 System Variable(s)		 Diesel Code			

Entity Snap Precision	 Aperture			 $(getvar,aperture)
Base Point		 InsBase			 $(getvar,insbase)
Drawing Limits*		 LimMin, LimMax		 ($(getvar,limmin),$(getvar,limmax))
Thickness		 Thickness			 $(getvar,thickness)

After the changes are applied, the Settings menu looks like this:

Additional menu items reporting values

There are some special things to notice about the menu illustrated above. Let’s go through them.

How to Add Units
The value of 10 shown for Entity Snap Precision is somewhat meaningless, so I added the word
“pixels” to the Title parameter, like this:
	 pixels = Entity Snap &Precision

Adding units to values

How to Solve Check Marks that Conflict with Icons
I found that the image (icon) for Fill seems to override the check mark. In the figures below, which
is on and which is off?

 
Left: Fill is ???

Right: Fill is ???

148    Customizing BricsCAD V20

Here’s why there’s a problem: when a toggle is on, the icon gets a thin black border, which I find is
easy to miss with the Fill, because it already has a black border. This is why I prefer the bold-looking
check mark over the essentially-invisible border.

One solution is to remove the icon from the Image field:

Removing the icon from the menu item

Now the check mark is prominent:

   
Left: Fill is off with blank icon

Right: Fill is on with checkmark icon

How to Deal with Two Sysvars
At first, I could not get the Drawing Limits item to work correctly. It extracts values from two
system variables, LimMin and LimMax, which is tricky. After some fiddling around, I found that I
could get the Diesel code to work by placing part of it in the Title parameter, like this:

Code for reporting two variables

Notice that the pieces of Diesel code are surrounded by parentheses, and separated by a comma.
This makes the pair of 2D coordinates more legible.
	 &Drawing Limits = ($(getvar,limmin)), ($(getvar,limmax))

This macro displays the limits as follows:
	 (0,0), (12,9)

Menu item reporting the values of two variables

	   8  Writing Macros and Diesel Codes    149

Reporting Through Diesel
Other menus can take advantage of Diesel’s reporting feature. Here are examples of what’s possible:

ÐÐ File | Close can report the name of the drawing file with the DwgName system variable.

ÐÐ Edit | Undo can report the name of the command being undone with CmdName.

ÐÐ View | Set Viewpoint can report the coordinates of the current view with VPointX, VPointY, and VPointZ.

ÐÐ Insert| Insert Block can report the name of the last-inserted block with InsBase.

ÐÐ Draw | Circle can report the current radius with CircleRad.

ÐÐ Dimension | Restore Dimension Style can report the name of the current dimensions style with DimStyle.

ÐÐ Modify | Fillet can report the current fillet radius with FilletRad.

ÐÐ Settings | TextStyle can report the name of the current text style with TextStyle.

ÐÐ Tools | Inquiry | Time Variables can report the duration the drawing has been open with TdInDwg.

Formatting Units
In the figure above, the values of Base Point and Drawing Limits are shown in architectural units.
This should come as a surprise you, because normally they would be displayed by default as deci-
mal units. In this case, I cheated: I didn’t use Diesel, but simply changed format of the units with
the Units command.

This example illustrates that some values in menus are affected by the current setting of Units.
Other values, such as Elevation and Thickness, are, however, still shown by four decimal places.
This can be overridden using Diesel code, as described next.

Formatting Diesel Output

You can apply formatting to the numbers and text generated by Diesel. Numbers and angles can
be formatted for units, while text can be converted to uppercase, or be truncated.

FORMATTING NUMBERS
Diesel provides functions for rudimentary formatting of numbers and coordinates.

Fix
The Fix function truncates real numbers to rounded-down integers. For example, if a Diesel cal-
culation returns the value of 5.321, then applying the Fix function changes the value to 4. “Round-
ing down” means that a value like 5.987 (which you would expect to be rounded up to 6) is also
truncated to 4:
$(fix,4.321)					 returns 5

150    Customizing BricsCAD V20

Index
The Index function extracts a single coordinate value from a comma-separated series. For example,
the BasePoint system variable returns a x,y,z coordinate like this:
(4,11,16)

You use the Index function to extract the x coordinate from (4,11,16), like this:
$(index,0,($getvar,basepoint))			 returns 4

Notice that Diesel uses a radix of 0, meaning it starts counting with 0, instead of 1 as we humans
do. Thus, the 0 in the function above extracts the first coordinate, x:

Index Number	 Coordinate Extracted				

	 0		 x
	 1		 y
	 2		 z

(When we count, we count like this: 1, 2, 3...; but when Diesel counts, it counts like this: 0, 1, 2... .
This makes counting in Diesel complex, because you have use a digit that’s one less than what you
would expect to use.)

Nth
The Nth function extracts the nth element from one or more items. Here, the 2 returns the third
element of the string of numbers, 8 (because Diesel starts counts with 0, not 1).
$(nth,2,10,9,8,7)				 returns 8

Both Index and Nth work with numbers and text.

Rtos
The Rtos function formats numbers with units. The function name is short for “real to string,” but
has nothing to do with strings! (A similar function, Angtos, formats angles.) Here is how to use it.
Say a drawing has units that are architectural, but you want Diesel to report numbers in decimal
notation, with one decimal place of accuracy. In the following example, the Rtos function formats
the first chamfer distance, ChamferA:
$(rtos,($getvar,chamfera),2,1)

Where:

	 ($getvar,chamfera) — name of the system variable, the source of the real number that you want to format.

	 2 — format of the number, decimal in this case. Diesel uses the same code as LUnits; see the table below for

more info. When you leave out this digit, BricsCAD reads the value found in the LUnits (linear units) sysvar.

Mode (LUnits)		 Number Display Format				

1			 Scientific notation (exponential format)		
2			 Decimal format (metric)		
3			 Engineering format (feet and decimal inches)		
4			 Architectural format (feet and fractional inches)		
5			 Fractional format (fractional inches, no feet)	

	

	   8  Writing Macros and Diesel Codes    151

	 1 — precision of the number, one decimal place in this case. When this digit is left out, then the value of Lu-

Prec (linear units precision) is used by default. The range is 0 to 8, meaning zero to eight decimal places, but

the precision itself varies depending on the units of the angle, as shown by the table below:

Angular Units		 Range of Precisoin (AuPrec)				

Decimal			 0 to 0.00000000
DMS			 0d to 0d00’00.0000”
Grads			 0g to 0.00000000g
Radians			 0r to 0.00000000r
Surveyor’s units		 N0dE to N0d00’00.0000”E 	

Formatting Angles
Angles are formatted through the Angtos function, short for “angle to string.” In this example, the
Angtos function formats the chamfer angle, ChamferD:
$(angtos,($getvar,chamferd),2,1)

Where:

	 ($getvar,chamferd) — specifies the name of the system variable, the source of the angle.

	 2 — specifies the format of the angle, grads in this case. Diesel uses the same code as the AUnits (angle units)

system variable. When this digit is left out, BricsCAD reads the current value in AUnits.

Mode (AUnits)		 Displays Angles As				

0			 Decimal degrees (360.0 degrees per circle)
1			 Degrees, minutes, seconds
2			 Grads (400 grads per circle)
3			 Radians (2pi radians per circle)
4			 Surveyor’s units (N and E coordinates)

	

	 1 — specifies the precision of the angle, one decimal place in this case. When this digit is left out, then AuPrec

(angular units precision

FORMATTING TEXT
Diesel provides the most rudimentary of functions for formatting text.

Upper
Diesel includes an Upper function that converts the entire text string to uppercase. This useful for
comparing two text strings, to ensure they are identical. There is no “Lower” function.

StrnLen
The StrLen function determines the number of characters in a string, while the Substr extracts a
portion of a string. Details on these and other functions are found later in this chapter.

Other types of text formatting, such as boldface and coloring, are not available in Diesel.

152    Customizing BricsCAD V20

VARIABLES IN DIESEL
You can use variables with Diesel functions. When you have the result of one calculation, you may
wish to store it for use later on by another second calculation — kind of like using a memories on
a calculator. Here is how you accomplish this:

1.	 First, you use the SetVar command to store the value in one of the user system variables, such as UserR1.

(This must be done outside of the menu macro.)
	 Command: setvar
	 Enter variable name or [?]: userr1
	 Enter new value for USERR1 <0.0000>: 3.141

2.	 Then you can access it inside the menu macro with the $(getvar function:
	 $(+,$(getvar,userr1),25)

The following user system variables can be used with Diesel:

ÐÐ UserR1 through UserR5 to store reals (numbers with decimals)

ÐÐ UserI1 through UserI5 to store integers (numbers without decimals)

ÐÐ UserS1 through UserS5 to store strings (text)

Actually, you can store anything you want in these 15 sysvars; it’s just handy that they are labelled
with R (for real), I (for integer), and S (for string). Careful though: the contents of these sysvars
are wiped clean when BricsCAD closes. The next time you start BricsCAD, their values are all 0.

Complete Catalog of Diesel Functions

Here are details on all Diesel functions supported by BricsCAD.

MATH FUNCTIONS
Diesel supports the four basic arithmetic functions.

+

The + (Addition) function adds together up to nine numbers:
	 $(+,2,3.4,10,5)			 returns	20.4

The function works with as little as one value, adding the value to 0:
	 $(+,2)				 returns	2

-

The - (Subtraction) function subtracts as many as eight numbers from a ninth. For example, the
following equation should be read as 2 - 3.4 - 10 - 5 = -16.4:
	 $(-,2,3.4,10,5)			 returns	-16.4

As another example, this equation should be read as 2 - 0 = 2:
	 $(-,2)				 returns	2

	   8  Writing Macros and Diesel Codes    153

*

The * (Multiplication) function multiplies together up to nine numbers.
	 $(*,2,3.4,10,5)			 returns	340

When you store the value of pi (3.141) in UserR1, you can perform calculations that involve circles.
For instance, recall that to find the area of a circle the formula is pi * r2. Diesel doesn’t support
squares or exponents, so you need to multiple r by itself: pi * r * r.

To find the area of a 2.5”-radius circle:
	 $(*,$(getvar,userr1),2.5,2.5)	 returns	19.63125

/

The / (Division) function divides one number by up to eight other numbers.
	 $(/,2,3.4,10,5)			 returns	0.01176471

This one reads as 2 / 3.4 / 10 / 5 = 0.1176471.

LOGIC FUNCTIONS
The logic functions test to see if two (or more) values are equal (or not).

=

The = (Equal) function determines if two numbers (or strings) are equal. If so, the function returns
1; if not, it returns 0.
	 $(=,2,2)				 returns	1

	 $(=,2,3.4)			 returns	0

<

The < (Less than) function determines if one number is less than another. If so, the function returns
1; if not, it returns 0.
	 $(<,2,2)				 returns	0

	 $(<,2,3.4)			 returns	1

>

The > (Greater Than) function determines if one number is greater than another. If so, the function
returns 1; if not, it returns 0.
	 $(>,2,2)				 returns	0

	 $(>,2,3.4)			 returns	1

!=

The != (Not Equal) function determines if one number is not equal to another. If not equal, the
function returns 1; if equal, it returns 0.
	 $(!=,2,2)			 returns	0

	 $(!=,2,3.4)			 returns	1

154    Customizing BricsCAD V20

<=

The <= (Less Than or Equal) function determines if one number is less or equal than another. If so,
the function returns 1; if not, it returns 0.
	 $(<=,2,2)			 returns	1

	 $(<=,2,3.4)			 returns	1

	 $(<=,9,0.5)			 returns	0

>=

The >= (Greater Than or Equal) function determines if one number is greater than or equal to
another. If so, the function returns 1; if not, it returns 0.
	 $(>=,2,2)			 returns	1

	 $(>=,9,0.5)			 returns	1

	 $(>=,2,3.4)			 returns	0

AND

The and (Logical Bitwise AND) function returns the bitwise logical “AND” of two or more integers.
This function operates on up to nine integers.

EQ

The eq (Equality) function determines if two numbers (or strings) are equal. If identical, the func-
tion returns 1; otherwise, it returns 0.
	 $(eq,2,2)			 returns	1

	 $(eq,9,0.5)			 returns	0

The values have to be exactly equal; for instance, a real number is not the same as an integer number,
as the following example illustrates:
	 $(eq,2.0,2)			 returns	0

Normally, you wouldn’t test two numbers; instead, you would test a number and a value stored in
a variable. For example, to check if LUnits is set to 4 (architectural units):
	 $(eq,$(getvar,lunits),4)		 returns	1 when LUnits = 4

					 returns	0 if LUnits = any other number

IF

The if function checks if two expressions are the same. If so, the function carries out the first option,
and ignores the second option; if false, it carries out the second option. In generic terms:
	 $(if,test,true,false)

where:

	 test — specifies another logic function, such as $(eq,clayer,0); test expects a value of 1 (true)

or 0 (false).

	 true — indicates the action to take when the test is true.

	 false — indicates the action to take when the test is false.

	   8  Writing Macros and Diesel Codes    155

For example, the following test checks to see if the current layer is not 0. If so, it then gets the name
of the layer. Notice that the true parameter is missing.
	 $(if,$(eq,clayer,”0”),,$(getvar,clayer))

OR

The or (Logical OR) function returns the bitwise logical “OR” of two or more integers.

XOR

The xor (Logical Bitwise Xor) function returns the bitwise logical “XOR” (eXclusive OR) of two or
more integers.

CONVERSION FUNCTION
The conversion functions change the state of numbers.

FIX

The fix function removes the decimal portion from real numbers, converting them to integers. This
function can be used to extract the number before the decimal point from a real number. (There
is no “round” function.)
	 $(fix,3.99)			 returns	3

STRING FUNCTIONS
The string functions manipulate text (and sometimes numbers).

INDEX

The index function extracts one element from a comma-separated series. Autodesk suggests using
this function to extract the x, y, and z coordinates from variables returned by the ($getvar function.
In generic terms, the function looks like this:
	 $(index,item,string)

where:

	 item — a counter; starts with 0.

	 string — the text being searched; contains comma-separated items.

Note that the item counter starts with 0, instead of 1; the first item is #0:
	 $(index,0,”2,4,6”)		 returns	2

String must be text surrounded by quotation marks; leave out the quotation marks, and Diesel
ignores the function. The string consist of one or more items separated by commas.

Here is an example of extracting the y coordinate from the LastPoint system variable:
	 $(index,1,$(getvar,lastpoint))	 returns	64.8721

156    Customizing BricsCAD V20

(The result will differ, depending on the coordinate stored in LastPoint.) Use the following item
values to extract specific coordinates:

Item	 Coordinate Extracted

0		 X
1		 Y
2		 Z

NTH

The nth function extracts the nth element from one or more items. This function handles up to
eight items. Like index, the first item in the list is #0. In generic terms, the function looks like this:
	 $(nth,item,n1,n2,...)

where:

	 item — a counter; range is 0 to 7.

	 n — a list of items separated by comma; maximum of eight items in the list.

If item exceeds n, then Diesel ignores this function.

Here are examples of using the function with numbers and text:
	 $(nth,2,2.3,4.5,6.7)		 returns	6.7

	 $(nth,1,Tailoring,BricsCAD,CAD)	 returns	BricsCAD

STRLEN

The strlen (String Length) function returns the number of characters in the string. This function
is useful for finding the length of a string before applying another function, such as substr.
	 $(strlen,Tailoring BricsCAD)	 returns	18

If the string is surrounded by quotation marks, Diesel ignores them.
	 $(strlen,"Tailoring BricsCAD")	 also returns 18

This function also works with numbers and system variables:
	 $(strlen,3.14159)		 returns	7

	 $(strlen,$(getvar,platform))	 returns	38

SUBSTR

The substr (SubString) function returns a portion of a string. This is useful for extracting text from
a longer portion. Generically, the function looks like this:
	 $(substr,string,start,length)

where

	 string — specifies the text to be handled.

	 start — indicates the starting position of the substring; first character is #1.

	 length — specifies the length of the substring; optional. If left out, the entire rest of the string is returned.

	   8  Writing Macros and Diesel Codes    157

Here are some examples of this function at work:
	 $(substr,Tailoring BricsCAD,5)	 returns	oring BricsCAD

	 $(substr,Tailoring BricsCAD,5,7) returns	oring B

If the string is surrounded by quotation marks, Diesel ignores them.
	 $(substr,"Tailoring BricsCAD",5)	also returns oring BricsCAD

This function also works with numbers and system variables:
	 $(substr,3.14159,1,4)		 returns	3.14

	 $(substr,$(getvar,platform),5,15)	 returns	osoft Windows N

UPPER

The upper (uppercase) function converts text strings to uppercase characters. (There is no “lower”
function in Diesel.) It works with text and system variables, as follows:
	 $(upper,”Tailoring BricsCAD”)	 returns	TAILORING BRICSCAD

	 $(upper,$(getvar,platform))	 returns	MICROSOFT WINDOWS NT VERSION 5.0

The function also works with numbers, but leaves them unchanged.

SYSTEM FUNCTIONS
The system functions are a collection of miscellaneous functions.

EDTIME

The edtime (Evaluate Date Time) function formats the display of the system time. This function
reads the date and time from the Date system variable, and then formats it according to your in-
structions. Generically, the function looks like this:
	 $(edtime,$(getvar,date),format)

where

	 format — specifies how the date and time should be displayed, as illustrated by the table below.

When format contains text that Diesel cannot interpret, it is displayed literally. The table shows
date formatting codes for a date of September 5, 2006:

Date Formats		 Meaning			 Example			

D			 Single-digit date		 5
DD			 Dual-digit date		 05
DDD			 Three-letter day		 Fri
DDDD			 Full-letter day		 Friday
M			 Single-digit month		 9
MO			 Dual-digit month		 09
MON			 Three-letter month		 Sep
MONTH		 Full-letter month		 September
YY			 Dual-digit year		 16
YYYY			 Four-digit year		 2016

158    Customizing BricsCAD V20

The table below lists time formatting codes for a time of 1:51:23.702AM:

Time Formats		 Meaning			 Example			

H			 Single-digit hour		 1
HH			 Dual-digit hour		 01
MM			 Minutes			 51
SS			 Seconds			 23
MSEC			 Milliseconds		 702
AM/PM			 Uppercase AM or PM	 AM
am/pm			 Lowercase AM or PM	 am
A/P			 Abbreviated uppercase 	 A
a/p			 Abbreviated lowercase	 a

TIPS  To use commas in the format code, surround them with ","” so that Diesel does not read the
comma as an argument separator.

The quotation-mark trick does not work for words like “Date” and “Month”: Diesel returns 1date and
7onth.

The date and time codes are case-insensitive; D and d work the same. The exceptions are for the AM/PM
and am/pm codes.

When the AM/PM and A/P format codes are used, Diesel displays the 12-hour clock; when they are left out,
Diesel displays the 24-hour clock.

The AM/PM and A/P format codes must be entered with the slash. If, say, PM is entered, then Diesel re-
turns P literally and reads M as the single-digit month code.

Here are some examples of using the EdTime function:
	 $(edtime,$(getvar,date),H:MMam/pm)		 returns	11:58am

	 $(edtime,$(getvar,date),DDD”,” DD-MO-YY)		 returns	Fri, 01-07-05

	 $(edtime,$(getvar,date), DDD”,” d mon”,” YYYY)	 returns	Fri, 1 Jul, 2015

EVAL

The eval (Evaluate) function displays text on the status bar:
	 Command: modemacro

	 Enter new value for MODEMACRO, or . for none <””>: $(eval,”This is text”)

It is equivalent to using the ModeMacro command without Diesel:
	 Command: modemacro

	 Enter new value for MODEMACRO, or . for none <””>: This is text

GETENV

The getenv (Get Environment) function gets the values stored in environment variables. This
function was designed for use with AutoCAD LT, which has two commands not found in AutoCAD:
SetEnv sets values in environment variables, and GetEnv reads the values. These environment
variables were originally stored in a file named aclt.ini, but are now stored in the Windows Registry.
	 $(getenv,maxarray)			 returns	10000

	   8  Writing Macros and Diesel Codes    159

As of BricsCAD V12, the behavior of $(getenv) is now consistent with that of LISP and SDS/BRX: it
searches for environment variables in BricsCAD environment registry; in Windows, Linux, or Mac
process environment; and in BricsCAD CFG settings. The read sequence is:

	 1.	 BricsCAD Windows registry

	 2.	 Linux, Mac, or Windows process environment

	 3.	 BricsCAD configuration

The Write sequence is (a) BricsCAD configuration, if a key is present, and (b) BricsCAD Windows
registry.

GETVAR

The getvar (Get Variable) function gets the values of system variables.

	 $(getvar,lunits)			 returns	4

LINELEN

linelen (line length) function returns the maximum length of display.
	 $(linelen)			 returns	240

DIESEL PROGRAMMING TIPS
Here are some tips for working with Diesel:

ÐÐ Each argument must be separated by a comma; there must be no spaces within the expression.

ÐÐ The maximum length of a Diesel macro is 240 characters; the maximum display on the status bar is 32 characters.

ÐÐ The ModeMacro system variable outputs text directly to the status bar until it reaches a $(, and then it begins
evaluating the macro.

ÐÐ Use the MacroTrace system variable to debug macros.

ÐÐ Use LISP’s (strcat) function to string together Diesel macros within LISP.

ÐÐ Use the $M= construct to use Diesel expressions in menu and toolbar macros.

Debugging Diesel
The purpose of the MacroTrace system variable is to help track down bugs in Diesel macros. When
on, a step-by-step evaluation of the Diesel macro should be displayed in the Text window. Although
MacroTrace exists in BricsCAD, it is not yet implemented.

160    Customizing BricsCAD V20

Instead, BricsCAD displays errors directly, whether in a menu or on the command line. Below, I
entered Diesel code with a non-exist ant sysvar, “nonsense.”

Error reported by Diesel

ModeMacro: Displaying Text on the Status Bar
The purpose of the ModeMacro command is to display text on the status bar.

Should BricsCAD ever get this function, then here is how to use it. First, let’s see how to display
text to the status bar:

1.	 Enter the ModeMacro system variable at the ‘Command:’ prompt, and then type something:
	 Command: modemacro
	 New value for MODEMACRO, or . for none <””>: Customizing BricsCAD

	 The words “Customizing BricsCAD” should appear at the far left of the status bar:

Using Diesel to display text on the status bar

	 (You cannot change the location where the text is positioned on the status bar.)

2.	 To remove the text from the status bar, type the ModeMacro system variable with a . (null string), as follows:
	 Command: modemacro
	 New value for MODEMACRO, or . for none <”Customizing AutoCAD”>: .

Removing user-defined text from the status bar

Customizing Ribbon
Tabs and Panels

CHAPTER SUMMARY

This chapter covers the following topics:

•	 Understanding the structure of ribbons

•	 Defining the look of the ribbon through workspaces

•	 Creating new tabs

•	 Adding panels to tabs

•	 Designing new panels

The ribbon is a Microsoft-designed user interface that some love to hate, and others have
come to like. Me, I don’t care for its design inconsistencies and for the extra clicks needed to get
at commands. Even though the ribbon is “unique” to Windows, Bricsys wrote a custom version so
that the ribbon works identically with the Linux and MacOS versions of BricsCAD.

In this chapter you learn how to customize the tabs and panels of the ribbon.

CHAPTER 9

162    Customizing BricsCAD V20

QUICK SUMMARY OF RIBBON COMMANDS AND VARIABLES

COMMANDS

	 Ribbon displays the ribbon.

	 RibbonClose closes the ribbon.

SYSTEM VARIABLES

	 RibbonState (read-only) reports whether the ribbon palette is open or closed:

ÐÐ 0 = ribbon is closed

ÐÐ 1 = open (default in most workspaces)

	 RibbonDockedHeight determines the height of the ribbon when docked:

ÐÐ 0 = ribbon sizes itself to the height of the selected tab

ÐÐ 120 = default value

ÐÐ 1 to 500 pixels = range

	 RibbonPanelMargin specifies the distance between buttons and the edges of the ribbon panel:

ÐÐ 0 = no spacing; default value

ÐÐ 50 = maximum value; in pixels

	 CleanScreenOptions determines whether the ribbon is displayed in clean screen mode:

ÐÐ 8 = ribbon is not displayed

	 StartUp specifies whether the ribbon is displayed by the Start window:

ÐÐ 3 = display Start page without ribbon

ÐÐ 4 = display Start page with ribbon

SETTINGS DIALOG BOX

	 The Ribbon section of the Settings dialog box holds only two of the ribbon variables:

	   9  Customizing Ribbon Tabs and Panels    163

The Structure of Ribbons

Along the top of the ribbon is a series of tabs with names like Home and Insert. Tabs are collections
of panels, and panels collect similar commands. You can think of tabs as overlapping toolbars. (new
in v20) The B “tab” is not a tab, but the file menu; that’s why it’s colored blue.

Tab names

Panel names

File menu

The ribbon consists of tabs and panels

Panels are identified by names along the bottom of the ribbon, like Draw and Modify.

When the ribbon is too wide for the screen, panels are compacted with a slideout, as shown below.

Condensed Annotations panel showing all items in a slide-out panel

The purpose of subdividing a ribbon into tabs and panels is to present a logical collection of related
commands. For example, many 2D drawing and editing commands are found in the Draw tab. All
parametric commands are clustered in the Parametric tab.

The formal structure of a ribbon looks like the following:
Ribbon

   Tab (one or more tabs)

     Panel (one or more panels)

        Rows (rows are optional; multiple rows allow vertically-stacked buttons)
          Buttons and combo bars (drop lists)
          Ribbon breaks (separator lines)
          Split buttons (drop-downs, fly outs)
          Toggle buttons (change color to show on-off status)

Here it gets tricky: although tabs and panels are customized by the Customize dialog box, the con-
tent of ribbon you see on the screen can also be defined by the current workspace! So, when you
customize the ribbon, you may have to work in two places:

Ribbon tab — defines all ribbon tabs and panels available to BricsCAD

Workspace tab — toggles the visibility tabs and panels to determine which ones are seen by users

Technically, this is called “indirection.” It makes customizing ribbons more complex with the benefit
of greater flexibility. It makes things easier for the you, the customizer: create one master set of
tabs and panels, and then click them on and off for various workspaces.

164    Customizing BricsCAD V20

TUTORIAL: HOW TO ADD PANELS TO RIBBON TABS
There are two ways to customize the ribbon: change the panels displayed by tabs, and change the
content of panels. First, let’s see how to add a panel to a ribbon tab.

1.	 Start BricsCAD.

2.	 If there is no ribbon visible, then turn it on. To display the ribbon, enter the Ribbon command:
	 : ribbon

	 Notice that the ribbon appears. If toolbars are on, then the ribbon appears below them.

Ribbon added to the “Drafting (toolbars)” workspace

TIPS  You turn off the ribbon with the RibbonClose command, or by clicking the small x at the ribbon’s
upper left corner.

When no drawings are open, all commands on the ribbon no longer work; they are colored gray. Use the B
“tab” to open a drawing or start a new one.

3.	 Open the Customize dialog box. I find typing the cui alias the fastest way to do this.

4.	 Choose the Ribbon tab. (It can get confusing: tabs in the dialog box, and tabs on the ribbon. To distinguish

between them, I’ll always write “ribbon tab” to refer to tabs in the ribbon.) Notice there are three nodes for

customizing ribbons, Ribbon Tabs, Ribbon Panels, and Contextual Tabs:

ÐÐ Ribbon Tabs node — specifies which panels occupy a tab

ÐÐ Ribbon Panels node — customizes the content of panels with buttons

ÐÐ (new to v20) Contextual Tabs node — tabs that display for the duration of a command

Customize dialog box open to the Ribbon tab

	   9  Customizing Ribbon Tabs and Panels    165

5.	 Open the Ribbon Tabs node by clicking the Expand button. Notice the long list of tab names, starting with

“Home.” There are nearly 40 of ’em, and you can make more.

	 (new in V20) Tabs are listed in alphabetical order; some tabs have been renamed, such as “Home 2D” to “2D

Home”; the total number of tabs is nearly doubled; contextual tabs are added.

Ribbon Tabs node showing tabs provided with BricsCAD

TIP  Some tab names seem to have near-duplicate names, such as “2D Home” and “3D Home.” The differ-
ence is that the 3D Home tab contains commands suitable for 2D drafting, while 3D Home is meant for 3D
modeling.

6.	 Each tab on the ribbon holds one or more panels. Click the Expand button next to 2D Home. Notice the list

of panel names, such as Draw and Modify.

The panels that reside in the 2D Home tab

7.	 To add a panel to a tab, follow these steps:

a.	 Right-click the name of a ribbon tab, such as 2D Home.

b. 	 From the shortcut menu, choose Append Panel.

Right-clicking a tab to insert a panel

TIP  You might think that you could drag an item from the Available Tools pane, but it doesn’t work with
the tabs section. The Available Tools are meant for customizing panels.

166    Customizing BricsCAD V20

	 Notice the Select Ribbon Panel dialog box. It lists the names all panels, and not just ones related to 2D.

List of available panels to insert into tabs

c. 	 Select the name of a panel, such as “2D Centerlines,” and then click OK to close the dialog box. Notice

that the panel is added to the end of the 2D Home list.

Centerlines panel added to the end of the “2D Home” tab

d.	 To see the newly added panel in the ribbon, click OK to close the Customize dialog box. Notice that the

new panel appears at the far end of the ribbon’s Home tab.

								 Centerlines panel added to the end of the Home tab

Moving Panels
You might not ant the To change the order in which panels appear in a tab, simply drag them around.
In the figure below, I dragged the “Centerlines” panel up to Annotations. BricsCAD places it below
(after) of the “Annotations” panel.

Rearranging the order by panels by dragging them around

The result of the move is shown in the ribbon illustrated below:

Centerlines panel moved next to Annotations

	   9  Customizing Ribbon Tabs and Panels    167

Copying Panels — Not
Making a duplicate of a panel is a great way to make a new one, without starting from scratch. In
previous releases, we could make a duplicate by holding down the Ctrl key (Cmd on Mac) while
dragging. In V20, this appears to no longer work.

Removing Panels
To remove a panel, right-click its name, and then choose Remove from the shortcut menu.

Removing a panel from a ribbon tab

BricsCAD asks if you are sure; click Yes.

Confirming the removal

TIP  To reset the UI to the fresh-out-of-the-box look, open the Customize dialog box, click the Manage
Your Customizations button, and then click the Reset to Defaults button.

TUTORIAL: MAKING NEW TABS
You have seen how to modify the look of a tab by adding, moving, and removing panels. In this
tutorial you learn how to create a new tab from scratch.

1.	 Open the Customize dialog box, and then go to the Ribbon tab.

2.	 Open the Ribbon Tabs section, and then right-click any tab name. Notice the shortcut menu:

Appending a new tab

3.	 Choose Insert Ribbon Tab. Notice that BricsCAD opens the Add Ribbon Tab dialog box.

Naming the new tab

168    Customizing BricsCAD V20

4.	 Fill out the fields with something unique, such as with this data:

Field	 Input		 Meaning							

Label	 Custom		 Label displayed by the tab on the ribbon
Title	 My Custom Tab	 Title shown in the Customize dialog box
ID	 rtCustom		 Identification used by BricsCAD to distinguish between elements;
			 “rt” is short for ribbon tab and identifies the purpose of the ID

Dialog box filled out

5.	 Click OK to close the dialog box. Notice that the new tab is added to the start of the list of tab names. You

can drag it to another location, if you wish.

New tab added to the ribbon

6.	 At this point, the tab is empty. Exit the Customize dialog box, and notice that BricsCAD display its empty.

Empty tab

(new in V20). You now perform these adding and moving tasks in the Ribbon tab. Prior to Brics-
CAD V20, these tasks had to be done in the Workspaces tab, including making the new tab visible.

QUICK SUMMARY OF CONTEXTUAL TABS

(new to v20) Contextual tabs display automatically when a specific command is invoked, and then stay on the screen for
the duration of a command. BricsCAD provides three of them, at time of writing:

Array editor – initiated by the ArrayEdit command

Block editor – initiated by the BEdit command

Reference editor – initiated by the RefEdit command (see below)

When the command ends, the tab disappears. Contextual tabs appear to be hard-coded into BricsCAD, and so you
cannot create additional ones.

	   9  Customizing Ribbon Tabs and Panels    169

Adding Panels to A New Ribbon Tab
To add panels to the new, empty ribbon tab, review the earlier tutorial. In brief, right-click the tab’s
name, and then choose Append Panel.

Moving Tabs Along the Ribbon
To move a ribbon tab to a different location on the ribbon, just drag its name to the new spot in
the Workspaces tab.

Making Copies of Tabs
When you hold down the Ctrl key (Cmd on Mac) while dragging the name of a ribbon tab, BricsCAD
makes a copy of the tab.

Hiding Tabs in a Workspace
To hide a ribbon tab, you need to switch to the Workspace tab. Right-click its name in, and then
choose Remove.

Hiding a tab by removing it from the workspace

Ignore the warning message: the Remove action does not erase the tab, but merely removes it from
view in this specific workspace. To actually erase a ribbon tab from BricsCAD, you need to remove
it in the Ribbon tab of this dialog box.

False warning message

CUSTOMIZING RIBBON PANELS
Now that you know how to customize and create ribbon tabs, let’s move on to a more complex
task: customizing the content of panels. It is at the panel level where the real work of customizing
ribbons takes place!

BricsCAD boasts the many panels, and you can make your own. You can change the content of exist-
ing panels, add new panels, or erase them. Panels hold many kinds of elements, such as sub-panels,
rows, buttons, and other controls.

170    Customizing BricsCAD V20

QUICK SUMMARY OF PANEL PARAMETERS

When you select the name of a panel in the Ribbon Tabs section of the Customize dialog box, BricsCAD displays the
following parameters:

This is the meaning of the parameters:

ID — identification used by BricsCAD for this user interface element. It must be unique, and should not be changed for
elements that ship with the software. In this case, “rp” is short for ribbon panel.

Collapse — controls how to make panels smaller when the tab is wider than the BricsCAD window. Choose one of
the options:

ÐÐ Automatic lets BricsCAD decide when to collapse the panel; default setting for all panels

ÐÐ Never Collapse keeps the panel full size, but cuts off buttons when BricsCAD window becomes too
narrow

ÐÐ Collapse Last causes other panels to collapse first

Label — name that appears as the panel name on the ribbon. In this case, “File” appears:

Title — title of the panel

Key Tip — shortcut that accesses the panel from the keyboard (not yet implemented in BricsCAD)

	   9  Customizing Ribbon Tabs and Panels    171

Below I show the Layers ribbon panel along side elements that make up the panel in the Custom-
ize dialog box.

  
Left: Layers panel; right: elements of the panel listed in the Customize dialog box

TIP  To easily see a panel’s definition from its tab, right-click the panel name and then choose Show Panel.
BricsCAD jumps to the panel’s definition.

Notice that each panel definition begins with a Row element. It is followed by any other element,
such as one or more buttons or more rows.

Panel Design Tips
Here are a couple of tips for designing panels:

 	 Flyouts are defined by a Large button assigned Split behavior

 Three rows are define by a sub-panel so that their elements
		 are positioned adjacent to the large Layers flyout button

TUTORIAL: POPULATING A NEW PANEL
You learned in an earlier tutorial how to create a new panel. Now it is time to fill it up (populate it)
with buttons and other elements. Open the Customize dialog box, and click the Ribbons tab. You
are working with the “Ribbon Panels” node, as follows:

1.	 Right click Ribbon Panels, and choose Append Ribbon Panel.

Appending a panel

	 Recall that “Append” means the panel will be added to the end of the list.

172    Customizing BricsCAD V20

2.	 Notice the dialog box, and that it looks like the one for making new ribbon tabs: this one is specific to panels.

Naming and ID’ing the new panel

	 Fill in the fields as shown below, and then click OK.

Field	 Value		 Meaning						

Label	 MyPanel		 Identifies the panel inside the Customize dialog box
Title	 My Panel		 Labels the panel for the user on the ribbon
ID	 rpMyPanel	 Identifies the panel to BricsCAD; “rp” is short for ribbon panel

	 Notice that the new panel is added to the end of the list of panels. If you were to exit Customize now, you

would see that it is blank, as illustrated below.

New panels are empty

3.	 The very first thing you do with a new panel is to add a row. Rows hold buttons and other UI elements in a

horizontal row. (To create a vertical column of elements, you would append two or more rows; BricsCAD

stacks them automatically.)

	 To add a row, follow these steps:

a.	 Right-click the name of the new panel.

b.	 Choose Append Row from the shortcut menu.

Adding a row to the new panel

4.	 Now fill the row with one or more buttons. First add a regular button, which BricsCAD calls a “command but-

ton.” (Later you tackle the other buttons.) This is how it works:

a.	 Right-click Row, and then choose Append Command Button from the shortcut menu.

Adding a button to the row

	   9  Customizing Ribbon Tabs and Panels    173

b. 	 Notice the Add Ribbon Command Button dialog box. Ensure that Select Available Tool is selected.

Selecting a tool from the available ones

c.	 Choose a command, such as Coincident, and then click OK. Notice that it is added to the My Panel panel.

Tool (command button) added to the new row

	 (If you were to check the ribbon back in BricsCAD, the panel would look like this the figure below.)

  
Left: Panel with single command button; right: Editing the parameters that define the command button

In the parameters pane at the bottom of the Customize dialog box, there are fields that define the
button. Several of them should be already familiar to you from the chapters on customizing tool
bars and menus, such as Help, Command, and Image. See figure above, at right.

Of specific interest to ribbon design is the Button Style field. It provides the following options:

Styling the button

Here is what the options mean:

Button Style		 Icon Size		 Text Label	 Illustration	

Small With Text 		 16x16 pixels 	 Beside the icon	

Small Without Text 	 16x16 pixels	 No label		

Large with Text (Vertical) 	 32x32 pixels	 Below the icon	

Large with Text (Horizontal) 	32x32 pixels	 Beside the icon	

Large Without Text	 32x32 pixels	 No label		

174    Customizing BricsCAD V20

This is what the panel looks like with buttons made from each setting:

Same button displayed with different styles

With the basics of panel design accomplished, for the remainder of this chapter, I catalog all panel
functions.

CATALOG OF PANEL ELEMENTS
Inserting and removing elements from panels is accomplished through shortcut menus, which are
accessed by right-clicking existing elements. The sole exception is moving elements around, which
is done through drag’n drop.

These are the three shortcut menus that contain the commands; the menu shown for “Row” is also
the one accessed from all other elements, such as Panel and button.

Shortcut menus for editing panels

	   9  Customizing Ribbon Tabs and Panels    175

In the following sections, I describe the functions of each option grouped as follows:

ÐÐ Append Ribbon Panel / Insert Ribbon Panel

ÐÐ Delete

ÐÐ Add Launcher

ÐÐ Append Row / Insert Ribbon Row / Insert Row Panel

ÐÐ Append Break / Insert Ribbon Break / Append Separator

ÐÐ Append Split Button

ÐÐ Append Toggle Button

Append Ribbon Panel / Insert Ribbon Panel
The Append and Insert Ribbon Panel options both add a new, blank panel to the list of Ribbon
Panels. The difference between them is subtle:

ÐÐ Append Ribbon Panel adds the new panel to the top of the list

ÐÐ Insert Ribbon Panel adds the new panel to the end of the list

If it ends up in the wrong place, just drag the panel name to the proper location. Both options
prompt you to fill out the fields in the same dialog box:

Labeling a panel

The ID should start with “rp” to identify it as a ribbon panel, and the name must contain no spaces.

PANEL PROPERTIES

Should you need to, you can modify the names in the properties pane, except for the ID, which is
fixed permanently — unless you erase the panel. (The Key Tip property does not function, yet.)

Properties of a panel

Delete
The Delete option erases the selected element. BricsCAD asks if you are sure:

Last chance before erasing it

176    Customizing BricsCAD V20

Add Launcher
A launcher is a small panel with a flyout button. When you click the flout button, the panel ex-
pands, as shown below. This is useful for tabs that are really wide (keeping their size in check) or
for panels that contain rarely used commands.

  

Left: Closed launcher; right: opened launcher

TYPE PROPERTY

Launchers have just one unique property. Type toggles it between “Macro” and “Ribbon.”

Type options

At time of writing, however, they have no effect on the launcher.

Append Row / Insert Ribbon Row / Insert Row Panel
Rows and row panels are meant to group elements within panels. The difference between the three
options are as follows:

ÐÐ Append Row — adds a row to the panel; a row holds one or more buttons horizontally

ÐÐ Insert Ribbon Row — also adds a row to the panel; there seems to be no difference from Append Row option

ÐÐ Insert Row Panel — adds a sub-panel to the panel; a panel holds one or more rows vertically

A common use of rows and row panels is to locate a group of smaller buttons adjacent to a large
one, as illustrated below.

  

Left: Matrix of zoom buttons in panel; right: how they are defined in the Customize dialog box

	   9  Customizing Ribbon Tabs and Panels    177

To get the nine buttons adjacent to the one big Zoom Extents button, one Panel and three Row
elements were used:

ÐÐ (Row) Panel — segregates the three rows from the big button

ÐÐ Row (x3) — creates three rows of horizontal buttons, stacked vertically

Rows have no properties; row panels have the following properties, none of which work at this time.

Properties of rows

ROW PANEL PROPERTIES

The Resize Style property determines what happens to the row panel when the ribbon is too small
for the width of the BricsCAD window. However, none of these have an effect at the time of writing.

Row Panel	 Options		 Meaning							

Resize Style	 •  Automatic	 Lets BricsCAD handle the re-sizing on its own terms
		 •  Never hide text	 Eliminates icons before eliminating icons
		 •  Never wrap	 Prevents panel from wrapping, splitting into two or more rows
		 •  Never shrink	 Prevents panel from being made smaller
		 •  Do not resize 	 Prevents panel from changing its size

Resize Priority	 100 (default)	 Determines whether other panels should resize before this one
				 Range is 1 (resizes first) to 1000 (resizes last)

Justify Top	 •  Yes		 Justifies row panels to the top of the row
		 •  No		 Centers the row panels

TIP  BricsCAD normally stacks ribbon elements vertically, and the Row Panel element aligns them horizon-
tally. (There is no “column” element.) You can use row panels to create rows within rows, or as columns (a
stack of buttons) next to rows.

Append Break / Insert Ribbon Break / Append Separator
Breaks split a panel into two, so that the second half slides out when clicked. BricsCAD, however,
does not support breaks. If you were to append a break, the contents of the panel would disappear,
so avoid using this element until Bricsys implements it!

The figures below show before and after appending a break to the Home-File 2D panel.

   
Left: Before....; right: ...and after applying the faulty Break parameter

Separators draw lines between elements in panels. BricsCAD, however, does not support breaks
at tine of writing.

178    Customizing BricsCAD V20

Append Split Button
To create a flyout-like effect on the ribbon, you take two steps: (a) append a split button, and then
(b) specify how it works with the Behavior property. To add a flyout to the panel, follow these steps:

1.	 In the panel you are designing, right-click a row and then choose Append Split Button from the shortcut

menu. For this tutorial, the panel is named “My Panel,” as illustrated below.

Adding a slit button to a panel

2.	 Notice that Split Button is added to the row:

New split button

	 Assign a command by right-clicking Split Button and then choosing Append Command Button from the

shortcut menu. From the Add Ribbon Command Button dialog box, select any command and then click OK.

	 The result is a small button with the flyout icon to the right — — the small black arrow. If you were to

click it, you would see the button repeated on the flout.

Single split button

3.	 Add one or two more buttons to the split so that it looks something like this:

More buttons added to the split

	 On the ribbon, the effect is as follows:

Multiple split buttons

	   9  Customizing Ribbon Tabs and Panels    179

4.	 With the split button in place, it’s now time to adjust its look. Split buttons have several unique parameters of

interest to you:

Parameters for split buttons

ÐÐ Behavior — determines what happens with the topmost button

ÐÐ List Style — specifies the look of buttons in the dropdown

ÐÐ Grouping — gathers buttons into groups

Let’s take a look at how they affect split buttons.

BEHAVIOR PROPERTY

The Behavior property of split buttons determines how the topmost button behaves when users
click on it. Here are the options:

Parameters for Behavior property

The options determine whether the button displays the default command (the first one in the list
of buttons), or the most recently used one (abbreviated as “MRU” by the programming biz). As well,
Behavior determines whether the element looks like a drop down (like a flyout) or like a split but-
ton (shows two buttons at once).

TIPS  Split buttons let you click the upper half to execute the most-recently used command, or lower half
to display the drop-list (flyout).

It is usual to use make split buttons large ones, so that they are easier for users to manipulate./

At time of writing, the Behavior parameter was not implemented; the only behavior that works is
“Drop Down with Recent,” no matter which one you choose. If Behavior were to work, then these
are the behavior options:

Behavior			 Displays						

Drop Down 			 Default command (first one in the list)
Drop Down with Recent 		 MRU (most recently used) command

Split 				 Default command
Split with Recent 			 MRU command (default option)
Split with Recent (static text) 	 Above line: Icon of MRU command
				 Below line: default command

180    Customizing BricsCAD V20

LIST STYLE PROPERTY

The List Style property determines the look of buttons in drop-downs.

  
Left: parameters for List Style property; right: how they appear in the ribbon

At time of writing, the List Style parameter was not implemented; the only style that works is “Icons
with Text” no matter which one you choose. If it were to work, then these would be the behavior
options:

List Style			 Displays						

Icon 				 Only icons
Icon with Text 			 Icons with text (default)	
Descriptive 			 Icons with boldface text

TIP   If you really need to cram in buttons, which I do not recommend, then use the Icon option, as this
option takes up the least space.

GROUPING PROPERTY

The Grouping property gathers buttons in split lists into groups. Grouping works with the Group
Name property, which defines the groups by name, but it was not implemented in BricsCAD at
time of writing.

The Grouping two options are No (default) and Yes:

Grouping	 Displays								

Yes		 Buttons in drop-downs are grouped by their assigned group name
No		 Buttons are listed in the order in which they appear in the Customize dialog box

Append Toggle Button
Toggle buttons display a blue background when on, and a normal background when off. They are
meant to provide a visual indication of the on-off status of a setting, as shown below with the Entity
Snaps panel.

Toggle buttons appearing blue when turned on

	   9  Customizing Ribbon Tabs and Panels    181

The catch is that the Toggle button itself doesn’t know how to handle the on-off status. It turns out
that a toggle-style button adds a parameter for entering Diesel code, as highlighted below.

Diesel code needed to toggle buttons

DIESEL PROPERTY

BricsCAD monitors the Diesel code to see whether to turn the blue background on. This is exactly
the same situation as with menu macros, in which you use Diesel to turn check marks on and off.
Here is the code for one of the entity snap toggles on the ribbon:
$(if,$(=,$(and,$(getvar,OSMODE),0x0001),0),,!.)

The good news is that you can copy and paste this code; all you need to do is replaced “OsMode”
with the name of another variable.

182    Customizing BricsCAD V20

Notes

Customizing Keystroke
Shortcuts, Aliases, &

Shell Commands

CHAPTER SUMMARY

This chapter covers the following topics:

•	 Understanding, editing, and deleting keyboard shortcuts

•	 Learning how keystrokes differ in Mac from Windows/Linux

•	 Listing all keystroke shortcuts

•	 Assigning multiple commands

•	 Learning about command aliases

•	 Editing and deleting aliases

•	 Applying alias rules

•	 Writing shell commands

Power users know that the keyboard is the fastest way to enter commands. BricsCAD has
several ways to use the keyboard efficiently, among them keyboard shortcuts and aliases. These
let you carry out commands by simply pressing assigned keys on the keyboard — often just one or
two. Both facilities are handled by the Customize dialog box.

CHAPTER 10

184    Customizing BricsCAD V20

QUICK SUMMARY OF SHORTCUT KEYSTROKES

BricsCAD uses these shortcut keystrokes, most of which can be customized through the Customize dialog box. On Mac
computers, use Cmd instead of Ctrl.

FUNCTION KEYS

Shortcut	 Commands 	 Meaning						

F1 		 Help		 Displays the Help dialog box
F2		 TextScr, 		 Toggles between Text and Graphics windows	
		 GraphScr
Shift+F2	 CliState		 Toggles the command bar
Ctrl+F2		 Ribbonstate	 Toggles the ribbon
F3		 Osnap T		 Toggles object snap mode
Shift+F3	 StatBar		 Toggles the status bar
F4		 Tablet T		 Toggles tablet mode
Shift+F4	 ScrollBar		 Toggles the scroll bars
Ctrl+F4		 WClose		 Closes the current drawing; function provided by Windows
Alt+F4		 Quit		 Closes drawings and BricsCAD; function provided by Windows
F5		 Isoplane		 Cycles through isoplanes
F6		 Coordinate T	 Cycles through coordinate display modes
Ctrl+F6		...		 Switches to the next drawing; function provided by Windows
F7		 Grid T		 Toggles the display of the grid	
F8		 Orthogonal T	 Toggles orthogonal mode
Shift+F8	 VbaMan		 Displays VBA Manager dialog box
Alt+F8		 VbaRun		 Displays Run BricsCAD VBA Macro dialog box
F9		 Snap T		 Toggles snap mode	
F10		 SnapType 		 Toggles polar tracking	
F11		 PolarMode 	 Toggles object snap tracking
Shift+F11	 AddInMan		 Displays the Add-in Manager dialog box
Alt+F11		 VBA		 Opens the Visual Basic Editor
F12		 QuadDisplay	 Toggles the Quad cursor; cannot be redefined with Customize
Ctrl_F12	 ...		 Toggles sub-entity selection mode; cannot be redefined with Customize

CONTROL KEYS

On MacOS computers, press Cmd instead of Ctrl.

Shortcut	 Command 	 Meaning						

Ctrl+1		 Properties 	 Toggles Properties panel	
		 PropertiesOff
Ctrl+2		 Explorer		 Displays Drawing Explorer
Ctrl+9		 CommandLine 	 Toggles command bar
		 CommandLineHide	
Ctrl+0		 CleanScreenOn	 Toggles clean screen mode		
 		 CleanScreenOff 	

			

Ctrl+A		 SelGrips All	 Selects all non-frozen objects
Ctrl+B		 Snap T		 Toggles snap mode	
Ctrl+C		 CopyClip		 Copies selected objects to Clipboard	

...continued

	   10  Customizing Keystroke Shortcuts, Aliases, and Shell Commands    185

These are the differences between keyboard shortcuts and aliases:

ÐÐ Keystroke shortcuts are like ctrl+C, alt-tab, and ctrl+V that to copy objects to the Clipboard, switch
to another application, and then paste them, respectively. You hold down the ctrl key, and then press C.
BricsCAD has many other keyboard shortcuts for its commands, and it lets you create your own. Once you’ve
memorized even a few, they let you work at top speed. The Keyboard tab assigns shortcuts to function keys,
ctrl, alt, shift, and/or arrow key combinations.

ÐÐ Aliases are abbreviations for command names, such as L for the Line command or AA for Area. So that you
don’t have to type full command names each time, you can create more aliases in the Customize dialog box’s
Aliases tab.

...continued

Ctrl+Shift+C	 CopyBase		 Copies selected objects with base point	
Ctrl+E		 Isoplane		 Switches to next isoplane	
Ctrl+F		 -Osnap T		 Toggles entity snap mode	
Ctrl+G		 Grid T		 Toggles display of the grid	
Ctrl+H		 PickStyle		 Toggles pick style
Ctrl+I		 Coords		 Cycles through coordinate display modes	
Ctrl+J		 ;		 Repeats the last command	
Ctrl+K		 Hyperlink		 Displays Hyperlink dialog box	
Ctrl+Shift+L	 LookFrom		 Toggles look-from viewpoint gadget
Ctrl+L		 Orthogonal T	 Toggles orthographic mode	
Ctrl+M		 ;		 Repeats the last command	
Ctrl+N		 New		 Displays the New Drawing dialog box	
Ctrl+O		 Open		 Displays the Open Drawing dialog box	
Ctrl+P		 Print		 Displays the Print dialog box
Ctrl+Shift+P	 OpmState		 Toggles the Properties panel	
Ctrl+Q		 Quit		 Closes drawings and BricsCAD	
Ctrl+R		 ^V		 Cycles through viewports	
Ctrl+S		 QSave		 Saves the current drawing	
Ctrl+Shift+S	 SaveAs		 Displays the Save Drawing As dialog box	
Ctrl+T		 Tablet T		 Toggles tablet mode	
Ctrl+V		 PasteClip		 Pastes entities from Clipboard	
Ctrl+Shift+V	 PasteBlock	 Pastes entities from Clipboard as a block
Ctrl+Alt+V	 PasteSpec		 Displays the Paste Special dialog box
Ctrl+X		 CutClip		 Cuts selected entities to Clipboard.	
Ctrl+Y		 Redo		 Redoes the last undo
Ctrl+Z		 U		 Undoes the last command

OTHER KEYS

Del	 	 Erase	 	 Erases the selected entities

Enter	 	 	 Executes command, repeats command, executes default option

Esc	 	 	 	 Cancels the current command

Home	 	 	 Resets the 3D view to home view

186    Customizing BricsCAD V20

Out-of-the-box, BricsCAD defines the shortcut keystrokes listed in the boxed text on the previous
pages. Regular keys (like A and 1) can be attached to the following special keys:

ÐÐ Function keys — those marked with the F prefix, such as F1 and F2

ÐÐ Shift keys — hold down the shift key, and then press a function, number, or alphabet key, such as F2 or B

ÐÐ Alternate (Option) keys — hold down the alt key, and then press another key; on Macs, hold down options key

ÐÐ Control (Command) keys — hold down the ctrl key, and press another key; on Macs, hold down cmd key

ÐÐ Shift + Control keys — hold down the shift and ctrl (or cmd) keys, and press another key

ÐÐ Shift + Alternate keys — hold down both the shift and alt (or opt) keys, and then press another key

ÐÐ Control + Alternate keys — hold down both the ctrl (or cmd) and alt (or opt) keys, and press another key

ÐÐ Control + Alternate + Shift keys — hold down the ctrl (or cmd) and alt (or opt) and shift keys all at the
same time, and then press another key

TIP  It does not matter if you press shift first or ctrl (cmd) first — similarly for alt (opt).

You can add and change definitions by assigning commands to as many as 188 key combinations.

While Macs use Cmd/Options instead of the Ctrl/Alt used by Windows and Linux, the Customize
dialog box displays Ctrl and Alt for all three operating systems. For instance, “Paste as Block” is
shown as Ctrl+Alt+V in the Windows, Linux, and Mac versions of the Customize dialog box, but is
used in the Mac version by pressing Command+Options+V.

  
Left: Keyboard shortcuts in Windows; right: same shortcuts in Mac version of Customize dialog box

The Control key on Mac keyboards cannot be used with BricsCAD.

Here is a mapping table between the keys on the three operating systems:

Windows, Linux		 Mac Equivalent	 Mac Symbol	

Alt (Alternative)	 	 Option		
Ctrl (Control)		 Cmd (Command)	
...			 Control		
F (Function)		 F (Function)	...
Shift	 		 Shift		

	   10  Customizing Keystroke Shortcuts, Aliases, and Shell Commands    187

TUTORIAL: DEFINING SHORTCUT KEYS
In this tutorial, you assign the Fillet command to ctrl+shift+F. Here are the steps to defining
this shortcut keystroke:

1.	 Enter the Customize command. (Alternatively, right-click any toolbar or ribbon, and then choose Customize

from the shortcut menu, or enter the CUI alias.) Notice the Customize dialog box.

2.	 Choose the Keyboard tab. Notice that it consists of three panes:

Customize dialog box displaying the Keyboard tab

ÐÐ Shortcuts pane (at the left) — lists the keyboard shortcuts that are currently assigned

ÐÐ Available Tools pane (at the right) — lists all of BricsCAD’s commands, sorted by menu name

ÐÐ Keyboard Shortcut pane (at the bottom) — for editing shortcut settings

3.	 To define a new shortcut, right-click any item in the Shortcuts area, and then choose Insert Shortcut.

Right-clicking to access shortcut menu

TIP  Do not change keystrokes reserved by Windows, such as these ones:
	 alt+f4	 	 Exits BricsCAD
	 ctrl+f4	 	 Closes the current window	 	
	 ctrl+f6	 	 Changes focus to the next window
	 f1	 	 Displays help

188    Customizing BricsCAD V20

	 Notice that the Add Keyboard Shortcut dialog box appears, and that it offers these options:

ÐÐ Select available tool — for choosing an existing tool (aka command) from BricsCAD’s list

ÐÐ Create a new tool — for creating new tools (using macros) from scratch.

Dialog box for choosing the “tool” (command) to add to the shortcut keystroke

4.	 In this tutorial, you work with an existing tool, and in this case the “available tool” is the Fillet command.

There is, unfortunately, no quick way to locate the command, as they are not listed alphabetically.

Arriving at the Fillet command

	 So, here is how to locate the command:

a.	 Ensure the Select Available Tool option is selected.

b.	 The Fillet command is a modification command, so you’ll find it under Modify. In the list of Available

Tools, open Modify by clicking the + sign next to it.

c.	 Scroll down until you come across Fillet.

TIP  As a faster alternative, press the ‘f’ key on the keyboard. This causes the highlight to jump to Flatten.
Keeping pressing ‘f’ until the cursor jumps to Fillet.

d.	 Click OK to accept Fillet.

	   10  Customizing Keystroke Shortcuts, Aliases, and Shell Commands    189

5.	 Back in the Customize dialog box, notice that much of the data is filled in for you, such as the help string and

command macro. The macro looks like this:
	 ^c^c_fillet

	 (Read chapter 8 to learn more about macros.)

Fillet added, but not yet assigned a keystroke

	 All that is missing is the desired keystroke. You add it by pressing the desired keys on the keyboard, like this:

a.	 Click the blank field next to Key.

b.	 Press the key combination on the keyboard, whether Windows, Linux, or Mac:
	 CTRL+SHIFT+F

ÐÐ In Windows and Linux: Hold down the Ctrl and Shift keys, and then press F.

ÐÐ In MacOS: Hold down the Cmd and Shift keys, and then press F.

	 Then let go of the three keys. Notice that the shortcut is added to the Shortcut list.

Pressing the keystrokes to assign to the tool

6.	 Click OK to dismiss the Customize dialog box and save your work.

7.	 Test the keystroke shortcut by holding down the ctrl (cmd on Macs) and shift keys, and then pressing F.

BricsCAD should execute the Fillet command.

TIP  You can assign one or more keystroke shortcuts per command. But once a keystroke is assigned, it
cannot be used for other commands.

190    Customizing BricsCAD V20

TUTORIAL: EDITING & DELETING KEYBOARD SHORTCUTS
To edit or delete a keyboard shortcut, follow these steps:

1.	 Open the Customize dialog box with the Cui alias.

2.	 In the Keyboard tab, select a keystroke in the left hand column, such as the ctrl+shift+F you defined earlier.

3.	 In the Keyboard Shortcut area, edit the command. You can, for example, backspace over the command text,

and then enter another macro.

4.	 To remove a keyboard shortcut, right-click it, and then choose Delete Shortcut from the shortcut menu.

Deleting a shortcut definition

5.	 BricsCAD asks if you are sure; click Yes.

Getting one last chance before the definition is gone

6.	 Click OK to exit the dialog box.

Tutorial: How to Assign Multiple Commands
You can assign more than one command to keyboard shortcuts. When two or more commands are
executed together, they are called macros. (Learn more about macros in Chapter 8.)

For example, to copy all objects in the drawing to the Clipboard takes two commands: Select All,
followed by CopyClip. The macros for each are as follows:
Select All	 ^c^c_selgrips;_all;;
CopyClip	 ^c^c_copyclip

To combine these two commands into a single keystroke shortcut, Ctrl+Shift+A, follow these steps:

1.	 Insert a new keyboard shortcut.

2.	 In the Add Keyboard Shortcut dialog box, choose one command, such as Copy (CopyClip) found in the Edit

section.

3.	 Click OK to return to the Customize dialog box.

4.	 Add the other command, Select All, by editing the Command section of the Keyboard Shortcut area. Add the

text shown in boldface:
	 ^c^c_selgrips;_all;;^c^c_copyclip

	   10  Customizing Keystroke Shortcuts, Aliases, and Shell Commands    191

	 The semicolon (;) is a metacharacter that’s equivalent to pressing Enter.

Adding a shortcut keystroke to the macro

5.	 Add the shortcut keystroke to the Key field:
	 ctrl+shift+a

	 You may wish to update the Help string to something like, “Copies all entities to the Clipboard.”

6.	 Click OK, and then test the macro by pressing ctrl+shift+A. BricsCAD reports:
	 : _SELGRIPS
	 Select entities to display grips: _ALL
	 Select entities to display grips:
	 : _COPYCLIP

	 Try pasting the copied objects into another document using ctrl+V.

Customizing Command Aliases

As well as keystroke shortcuts, BricsCAD also allows you to define one- or more-letter command
shortcuts, called aliases. An alias typically is an abbreviation of a command name, such as L for the
Line command, and OS for OSnap (object snap).

You may wonder about longer aliases, such as Colour. Aliases can, in fact, be any length of charac-
ters, but when they are more than two or three characters in length, then they start to defeat the
purpose of aliases, which is to be brief. Long alias names are, however, useful for making BricsCAD
compatible with older versions with different command names, and with other CAD packages. For
instance, Colour is another name for the Color command.

BricsCAD predefines around 300 aliases. There’s a lot of them, because BricsCAD needs to have all
of AutoCAD’s aliases, plus more for BricsCAD commands that have changed names over previous
releases.

With recent releases of BricsCAD, aliases are being deprecated. No new aliases are being added.
This is because AutoComplete has taken over the task of entering a few letters to access an entire
command name. In the figure below, I typed in l-a-y.

BricsCAD finding all commands that being with LAY

Instead of memorizing aliases (some of them obscure) that work for many — but not all commands
— we now type the first one, two, or three letters of any command name to access all of them. Who
would know that ‘cui’ is an alias for Customize; AutoComplete lets new users type ‘cus’ instead.

192    Customizing BricsCAD V20

TIP  Although they were designed to reduce keyboard typing, aliases can also be used in toolbar and
menu macros. However, if the definition of the alias is changed, then the macro will no longer work.

TUTORIAL: CUSTOMIZING ALIASES
You access aliases, as follows:

1.	 Enter the Customize command. (Or, enter the Cui alias at the ‘:’ command prompt.)

2.	 Notice the Customize dialog box. Click the Command Aliases tab.

Customize dialog box showing the Command Aliases tab

	 This version of the dialog box looks different from other tabs, in that it has just two panes, plus some extra

buttons along the bottom

	 Alias-Command pane (at the left) — lists all aliases already defined. Notice that an alias, such as -AT is

linked with the -AttDef command.

	 Commands pane (on the right) — lists the names of all commands found in BricsCAD.

TIPS  Aliases are stored in the the default.pgp file.

If you’ve created aliases with AutoCAD, you can import them into BricsCAD using Notepad to open the
default.pgp file. Copy and paste aliases from AutoCAD’s acad.pgp file.

Unlike keyboard shortcuts, aliases cannot be macros. This means each alias supports a single command
only.

TUTORIAL: CREATING NEW ALIASES
In this tutorial, you create an alias for one of BricsCAD’s commands lacking an alias: J for the Join
command.

1.	 In the Customize dialog box’s Command Aliases tab, click the Add button.

Adding an alias

	   10  Customizing Keystroke Shortcuts, Aliases, and Shell Commands    193

2.	 Notice the Add Alias text entry box:

a.	 In the Alias field, enter j.

Specifying the new alias character

b.	 From the Command droplist, choose Join.

Choosing the command from a droplist

c.	 Click OK to dismiss the dialog box.

3.	 Click OK to close the Customize dialog box.

4.	 Now test the alias by entering J and then pressing Enter. BricsCAD should execute the Join command.

Tutorial: Editing & Deleting Aliases
To edit an alias, follow these steps:

1.	 In the Customize dialog box’s Aliases tab, choose the alias you wish to edit, such as the J you defined above.

2.	 Click Edit. (To erase an alias, click Delete instead.)

Editing an alias

194    Customizing BricsCAD V20

BRICSCAD ALIASES SORTED BY COMMAND NAME

A
align	 al
aperture	 ap
apparent	 planviewint
arc	 a
area	 aa
array	 ar
attdef	 at, ddattdef
-attdef	 -at
attdisp	 ad
attedit	 -ate
attext	 ax, ddattext
-attext	 -ax

B
background	 backgrounds
base	 ba
blipmode	 bm
block	 b
-block	 -b
boundary	 bo, bpoly
-boundary	 -bo
break	 br

C
centerline	 cl
centermark	 cm
chamfer	 cha
change	 -ch
circle	 c
color	 col
-color	 -col, -colour
color	 colour, ddcolor, ddcolour, setcolor
copy	 co, cp
copylink	 cl
customize	 cui
cylinder	 cyl

D
ddedit	 ed
ddgrips	 gr
ddselect	 se
ddvpoint	 setvpoint, viewctl, vp

dist	 di
divide	 div
donut	 do, doughnut
draworder	 dr
dsettings	 ddrmodes, rm
dview	 dv
dxfout	 dx

Dimensions
dim	 dimension
dimaligned	 dal, dimali
dimangular	 dan, dimang
dimbaseline	 dba, dimbase
dimcenter	 dce
dimcontinue	 dco, dimcont
dimdiameter	 ddi, dimdia
dimedit	 ded, dimed
dimlinear	 dimhorizontal, dimlin,
dimrotated,dimvertical, dli
dimordinate	 dimord, dor
dimoverride	 dimover, dov
dimradius	 dimrad, dra
dimstyle	 d, ddim, dimsty, ds, dst, expdim-
styles, setdim
-dimstyle	 -dst
dimtedit	 dimted

E
eattedit	 ate
ellipse	 el
erase	 delete, e
expblocks	 bx, xb
explode	 x
export	 dwfout, exp
expucs	 dducs, uc
extend	 ex
extrude	 ext

F
fillet	 f, fi

	   10  Customizing Keystroke Shortcuts, Aliases, and Shell Commands    195

G
geographiclocation	 geo
grid	 g

H
hatch	 bh, h
-hatch	 -bh,-h
hatchedit	 he
hide	 hi

I
id	 idpoint
image	 expimages, im
imageadjust	 iad
imageattach	 iat
imageclip	 icl
import	 imp
insert	 ddinsert, i
-insert	 -i
insertaligned	 insal
insertobj	 io
interfere	 inf
intersect	 in
isolateobjects 	 isolate	

isoplane	 is

L
layer	 ddlmodes, explayers, la
-layer	 -la
layerstate	 las
laymcur	 setlayer
leader	 le, lead
lengthen	 editlen, len
light	 lighting
lightlist	 ll
line	 3dline, l
linetype	 ddltype, expltypes, lt
-linetype	 -lt
list	 li, ls
ltscale	 lts

M
matbrowseropen	 matb

matchprop	 ma
materialmap	 setuv
materials	 finish, mat, rmat
mirror	 mi
mirror3d	 3dmirror, 3m

move	 m
mslide	 msnapshot
mspace	 ms
mtext	 mt, t
mview	 mv

N
newwiz	 ddnew

O
offset	 o
oops	 undelete, unerase
open	 op
options	 cfg, config, preferences, prefs
orthogonal	 or, ortho
osnap	 ddesnap, ddosnap, os, setesnap
-osnap	 esnap,-os

P
pan	 p, -p
pastespec	 pa
pedit	 editpline, pe
pline	 pl, polyline
point	 po
polygon	 pol
preview	 ppreview, pre
properties	 ch, ddchprop, ddmodify, mo, pr, props
propertiesclose	 prc
pspace	 ps
purge	 pu
-purge	 -pu
pyramid	 pyr

Q
qnew	 n
qtext	 qt
quit	 exit

R
rectang	 rec, rect, rectangle
redraw	 r
redrawall	 ra
regen	 re
regenall	 rea
region	 reg
reinit	 ri
rename	 ddrename, ren
-rename	 -ren
render	 rr

196    Customizing BricsCAD V20

renderenvironment	 fog
renderpresets	 roptions
renderwin	 rendscr
revolve	 rev
rotate	 ro
rotate3d 3r, 3drotate
rpref	 setrender

S
save	 sa
scale	 sc
script	 scr
section	 sec
selgrips	 selgrip
setucs	 dducsp, ucp
setvar	 set
shade	 sha
shademode	 vscurrent
sketch	 freehand
slice	 sl
snap	 sn
solid	 plane, so
spell	 sp
spline	 spl
splinedit	 spe
stretch	 s
style	 ddstyle, expfonts, expstyle, expstyles, st
-style	 font
subtract	 su
sunproperties	 sun

T
tablet	 ta
-text	 -t
text	 tx
thickness	 th
time	 ti
tolerance	 tol

torus	 tor
trim	 tr

U
union	 uni
units	 ddunits, un
-units	 -un

V
vbaide	 vba
view	 ddview, expviews, v
-view	 -v
vplayer	 vl
vpoint	 viewpoint,-viewpoint,-vp,-vpoint
vports	 viewports, vport, vw
vslide	 vs, vsnapshot

W
wblock	 w
wcloseall	 closeall
wedge	 we
wmfin	 wi
wmfout	 wo

X
xattach	 xa
xbind	 -xb
xclip	 clip
xline	 infline, xl
xref	 expxrefs, xr
-xref	 -xr

Z
zoom	 z

#
3darray	 3a, array3d
3dface	 3f, face
3dmesh	 mesh
3dpoly	 3p

	   10  Customizing Keystroke Shortcuts, Aliases, and Shell Commands    197

3.	 In the Edit Alias dialog box, select another command, and then click OK.

4.	 Click OK to exit the Customize dialog box.

RULES FOR WRITING ALIASES
Here are some suggestions Autodesk provides for creating command aliases:

ÐÐ An alias should reduce a command to two characters at most.

ÐÐ Commands with a control-key equivalent, status bar button, or function key do not require a command alias.
Examples of commands to avoid include the New command (already assigned to ctrl+N), Snap (already on
the status line), and Help (already assigned to function key F1.

ÐÐ Try to assign the first character of a command. If it is already taken by another command, assign the first two,
and so on. For example, C is assigned to the Circle command, while CO is assigned to the Copy command.

ÐÐ For consistency, add suffixes for related aliases. For example, H is assigned to the Hatch command, so assign
HE to HatchEdit.

Tutorial: Hand-Coding Aliases
If you wish to write your aliases directly, open the default.pgp file with a text editor. In Windows,
open the file in Notepad (or Text Editor in Linux, or TextEdit in Mac). The .pgp file is found in the
following locations:

	 Windows — C:\Users\<login>\AppData\Roaming\Bricsys\BricsCAD\V20x64\en_US\Support\default.pgp

	 Linux — /home/<login>/Bricsys/BricsCAD/V20/en_US/Support

	 Mac — /Users/<login>/Library/Preferences/Bricsys/BricsCAD/V20x64/en_US/Support

In all cases, the beginning of the file’s Command Aliases section looks like this:

To add a new alias, mimic the format shown above:
	 alias, *commandName

Enter the alias name followed by comma, space, asterisk, and the command name.

Text editor showing the content of the Default.pgp file

198    Customizing BricsCAD V20

When done, press Ctrl+S (or Cmd+S on Macs) to save the file. Back in BricsCAD, use the ReInit
command to reload the .pgp file.

Customizing Shell Commands

The final tab in the Customize dialog box is labelled Shell Commands. It is meant for customizing
shell commands, which are almost never used anymore.

They are a holdover from the days of DOS (disk-based operating system), from before Windows
allowed multiple programs to run on PCs. The DOS operating system limited computers to running
one program at a time. (Additional programs, called “TSRs” [short for terminate but stay resident],
could be loaded into memory and accessed, but they had to be very small and be specially coded.)

If you wanted access a text editor or another useful program while running CAD, then you could
“shell out” of the program, run the text editor, and then return to the CAD program. The CAD program
suspended operations while the text editor was running. This was done with the Shell command,
sometimes known as running an “external command.”

Today, the Shell command is no longer necessary, because Windows lets us run many programs at
the same time as we want, switching between them effortlessly. But Shell still works in BricsCAD
and can be a handy way to access other software. For example, instead of starting a text editor by
navigating through the Windows Start menu, you can type “notepad” at the BricsCAD command
prompt:
: notepad
File to edit: (Enter a file name)

After you enter a file name, Windows launches Notepad with the file. When you enter the name of
a file that does not exist, Notepad offers to start a new file with that name, as shown below.

Starting a new text file

To load a file at the same time as executing the external command, include the file name with the
command name, like this:
Shell Command: start notepad default.pgp

	   10  Customizing Keystroke Shortcuts, Aliases, and Shell Commands    199

When the name of the command and/or file have spaces in them, you’ll need to use quotation
marks around them, like this:
Shell Command: start notepad "c:\program files\bricsys\bricscad V20\default.pgp"

Quotation marks let the operating system differentiate between spaces that separate commands
from spaces that are part of a file or path name.

Shell commands are stored in the same default.pgp file as aliases, and so is found in the following
folder: C:\Users\<login>\AppData\Roaming\Bricsys\BricsCAD\V20x64\en_US/Support .

The shell portion of file has not been adapted for use with Linux and Mac, because of shell com-
mands’ history stemming from DOS.

The Shell Commands section of the default.pgp file looks like this:
	 DEL,		 DEL,			 8,	 File to delete: ,
	 SH,		 ,			 1,	 *OS Command: ,
	 SHELL,		 ,			 1,	 *OS Command: ,
	 START,		 START,			 1,	 *Application to start: ,
	 NOTEPAD,	START NOTEPAD,	 1,	 *File to edit: ,

There are four components that define a shell command:

	 Alias — specifies an alias for the shell command. It can be any word not already used by the default.pgp file.

	 Shell Command — specifies the name of the command sent to the operating system. Notice that for Note-

pad there are two words, Start and Notepad:

	 Start is the command that executes another command, Notepad in this case. Leave out the “.exe” ex-

tension of the command name. If the shell command needs to also specify a file name, it is entered here,

as I’ll show you later.

	 Prompt — specifies the wording of a prompt to display in the command bar. This can be blank or consist of

some helpful words, such as “File to edit.”

In addition, there is a flags field at the end of each line. It is left blank, because BricsCAD does not
support flags. If it ever did, here is what they would mean:

Flag	 Meaning									

1	 On: BricsCAD does not wait for the application to finish before returning to the command prompt.
	 Off: BricsCAD waits for the application to finish.

2	 On: The applications runs minimized; i.e., on the task bar.
	 Off: The application runs normally, ie, displayed on the screen.

4	 On: The application does not appear.
	 Off: The application appears on the screen.

8	 On: The shell command uses quotation marks; required when the name of the file contain spaces.
	 Off: The shell command does not use quotation marks.

200    Customizing BricsCAD V20

TUTORIAL: EDITING SHELL COMMANDS
Shell commands are defined by the Shell Commands tab of the Customize dialog box. To see how
they work, we’ll look at one of the existing commands, Notepad. Follow these steps:

1.	 Enter the Customize command.

2.	 In the Customize dialog box, select the Shell Command tab. Notice that a few commands are already defined.

Adding a shell command

3.	 To edit a shell command, select one of them and click the Edit button. For this tutorial, select “Notepad,” and

then click Edit. Notice the Edit Shell Command dialog box.

Editing a shell command

TIP  It’s not a good idea to use the names of existing BricsCAD commands or aliases; if you do, BricsCAD
complains, “Cannot use the name for a shell command alias, because it already exist as a normal alias.”

4.	 Make changes to the parameters, such as the alias or prompt.

5.	 Click OK to exit the dialog box, and then click OK to exit the Customize dialog box.

6.	 Test the new customization.

The process for adding a new shell command is similar.

Customizing Mouse,
Double-click,

& Tablet Buttons

CHAPTER SUMMARY

This chapter covers the following topics:

•	 Understanding how commands are assigned to mouse and tablet buttons and double-click actions

•	 Assigning commands, macros, and shortcut menus to mouse buttons

•	 Assigning actions to double-click actions and tablet buttons

The mouse is your constant companion in BricsCAD, and you can customize its buttons, as
well of those on a stylus or puck used with digitizing tablets. BricsCAD does not, however, explicitly
support touch screens and styli used with Windows 8.x and 10. BricsCAD supports 3D mice, but
its buttons are customized by the utility software provided with them

The Customize dialog box in BricsCAD is where you go to change the meanings of up to two but-
tons on mice, and up to 15 buttons on tablet input devices:

	 Mouse tab — assigns macros to the right and middle buttons, along with Shift, Ctrl (Cmd on Macs), and

Shift+Ctrl keys; these are called “clicks.” You can also assign macros to double-click actions.

	 Tablet tab — assigns macros to buttons, along with Shift key

CHAPTER 11

202    Customizing BricsCAD V20

SUMMARY OF MOUSE COMMANDS & VARIABLES

These are the system variables that affect the use of mice with BricsCAD:

Variable	 Meaning							

CtrlMouse	 Toggles specific key-button combinations; when on, the following work:
		 Ctrl+Left button		 3D view rotation
		 Ctrl+Rigth button	 3D viewing with fixed z axes
		 Ctrl+Shift+Left button	 Real-time zooming
		 Ctrl+Shift+Right button	 Real-time panning

		

Ctrl3DMouse	 Toggles the use of 3D mice with BricsCAD (must restart the program after changing it):
		 0 	 (Off) Disables 3D mouse
		 1 	 (On) Enables 3D mouse

MButtonPan	 Specifies the function of the middle button:
		 0 	 (Off) Carries out the action defined by the Customize command
		 1 	 (On) Pans drawing while dragging with middle button held down; default

ShortcutMenu	 Specifies what happens when you press the right mouse button:
		 1	 Enable default mode shortcut menus
		 2	 (Default) Display shortcut menu for editing
		 4	 Display shortcut menu for commands during any command
		 8	 Display shortcut menu for commands when command options are active
		 16	 (Default) Display the shortcut menu when right button is held down longer

ShortcutMenuDuration	 Specifies how long to hold down the right button until a shortcut menu appears:
		 250	 (Default) Time in milliseconds, or 1/4 second

ZoomFactor	 Sets the zoom speed:
		 3 	 Slowest speed, helpful for very slow zooming
		 60	 Default speed
		 100	 Fastest speed, useful for very large drawings

ZoomWheel	 Determines the scroll wheel’s zoom direction:
		 0	 (Off) Moving wheel forward zooms in; default
		 1	 (On) Moving wheel forward zooms out; Mac-like zoom

The following command works with tablets:

Tablet — toggles use of the tablet, and configures tablet surfaces.

	   11  Customizing Mouse, Double-click, & Tablet Buttons    203

About Mice and Their Buttons

The very first computer mouse had three buttons. Since then, the button count on mice has strayed
in different directions. Some mice have many more than three buttons, while others sport no but-
tons at all.

     
Left to right: An early mouse with three buttons; a modern mouse of many buttons; and an Apple mouse with no buttons

For instance, I use the Logitech MX mouse with my primary work computer. It has nine buttons (I
think) that offer functions like moving forward-reverse through Web pages and side-to-side scroll-
ing. Other mice, such as one model from Apple, have no buttons at all: you tap, slide, pinch, and
otherwise move your fingers on the smooth surface, as if it were a touchpad.

Mouse Buttons. Whether the mouse has three, nine, or zero buttons, BricsCAD customizes only
two of them — the ones traditionally named “middle” and “right.”

The left mouse button is never customized as it performs the all-important picking function.

Left button (#1, pick)

Right button (#2)

Middle button (#3)

BricsCAD’s 1-3-2 numbering of left, right, and center buttons on mice

Modifier Keystrokes. You can define more than two actions for each button by adding Shift, Ctrl
(on Macs, the Cmd button), and Shift+Ctrl keys to buttons.

So, when you hold down the Shift key while clicking the right button, BricsCAD executes a different
command from when you click the right button alone.

Double-clicking. The other way to access more commands through the mouse is with double-
clicking. When you double-click an entity in the drawing, BricsCAD runs a command suitable to
editing the entity.

204    Customizing BricsCAD V20

QUICK SUMMARY OF DEFAULT BUTTONS

Sometimes you might see buttons referred to by number. Here is what the numbers mean:

Button			 Number							

Left			 1
Right			 2
Center			 3

DEFAULT ACTIONS

BricsCAD assigns these macros to the right and center mouse buttons through the Mouse tab of the Customize dialog box: :

Keystroke+Button		 Action				 Macro			

Right button		 Repeats last command		 unassigned
Middle button		 Displays object snap shortcut menu	 $p0=SNAP $p0=*	

Shift+
Right button		 Displays Entity Snap shortcut menu	 unassigned
Middle button		 Real-time rotation 			 unassigned

Ctrl+
Right button		 Real-time rotation about z axis		 unassigned
Middle button		 Displays object snap shortcut menu 	 unassigned

Shift+Ctrl
Right button		 Real-time pan			 unassigned
Middle button		 Real-time rotation 			 unassigned

WALKTHROUGH BUTTONS

Walkthrough navigation in perspective views uses the following mouse buttons and keystrokes:

Mouse Button		 Command	 Meaning					

Alt + Left button 		 RtWalk		 Walks forward, backwards, and sideways		
Alt + Middle button 	 RtUpDown	 Moves up, down, and sideways			
Ctrl + Middle button 	 RtLook		 Looks around				

Ctrl + Home key		...		 Resets view direction to the horizontal		
Alt + Home key		...		 Moves target point to the center of the scene	
Alt + Plus key		 RtWalkSpeedFactor	 Increases walking speed			
Alt+Minus key 		 RtWalkSpeedFactor	 Decreases walking speed			
Ctrl + Plus key		 RtRotationSpeedFactorIncreases rotation speed			
Ctrl+Minus key 		 RtRotationSpeedFactorDecreases rotation speed			

TABLET BUTTONS

BricsCAD assigns no macros to stylus or puck buttons, by default. This can be done through the Tablet tab of the Cus-
tomize dialog box.

	   11  Customizing Mouse, Double-click, & Tablet Buttons    205

Most double-click actions bring up the Properties panel, if it isn’t already visible. The remainder are
assigned to entity-specific commands, such as HatchEdit for hatch patterns or double-clicking a
dimension starts the DdEdit command for editing its text. You can customize double-click actions.

Delayed Press. There is one more mouse action available for invoking commands. When you hold
down the right mouse button longer than 250 milliseconds, then BricsCAD can carry out a different
command. The command, however, cannot be customized by you.

(Some CAD packages execute commands through mouse gestures, where the mouse’s dictional
movements are interpreted as commands. This is not available in BricsCAD.)

The Customize dialog box’s Mouse tab lists the possibilities, as shown below. The only button al-
ready assigned is Click (left button); it displays the Snap Menu. The other buttons are unassigned.

Customize dialog box’s Mouse tab showing button definitions

Here is how to read the content of the Mouse tab: under Click, there are two entries: the first (-----)
is for button #2, and the second (Snap Menu) is for button #3.

The remaining entries are for keyboard modifiers to buttons — Shift, Ctrl, and Shift+Ctrl — such
as Shift-Click. At the end is the section for double-click actions

About the Pick Button
You cannot customize the pick button (left button) for good reason. You never want to lose the
ability to pick things in the user interface or the drawing! BricsCAD doesn’t let you customize the
pick button in combination with keystrokes, either.

About the Right Button
The right button almost always has two specific functions:

In the drawing area — ends the current command or restarts the last command

In most user interface elements — accesses shortcut menus, just like in other programs

About the Middle Button
The middle button is often used as a quick way to pan and zoom around the drawing:

	 Panning — hold down the middle button, and then drag the mouse to pan

	 Zooming — roll the scroll wheel back and forth to zoom in and out at the cursor

	 Oribting — hold down the Shift key, hold down the middle button, then drag the mouse around to orbit

in 3D about the cursor

206    Customizing BricsCAD V20

TIP  When you zoom and orbit using the middle button, the action takes place where ever the cursor is
in the drawing. For example, when you roll the scroll wheel to zoom in, you zoom into where the cursor is
located. This is great for zooming into a specific place in the drawing: just move the cursor there, and then
scroll.

If your mouse has a scroll wheel (most do, these days), then the wheel is the middle button: to drag,
hold down the scroll wheel and then move the mouse.

Troubleshooting
If panning and zooming do not work as you expect, then there are two settings to check out.

ÐÐ Enter the MButtonPan variable to ensure it is set to On. When on, then the middle button pans the drawing.
When off, the middle button carries out the action defined in the Customize dialog box.

	 : mbuttonpan
	 New current value for MBUTTONPAN (Off or On) <Off>: on

ÐÐ If the middle button is still not panning the drawing, then you may need to change the button’s definition in the
mouse’s utility software. For example, if you use the Logitech’s SetPoint software to define the middle button as
“Double Click” or anything else, then this overrides the definitions assigned by BricsCAD. To fix the no-panning
problem, change the mouse driver’s definition back to “Middle Button,” as illustrated below.

Software for defining Logitech mouse button actions

Me, I used to always define the middle button for double-clicks, which is an especially efficient
way of getting around Windows. But this interferes with the CAD program’s ability to pan using
the middle button. So I now define the double-click action to one of the side-mounted buttons on
my nine-button mouse.

	   11  Customizing Mouse, Double-click, & Tablet Buttons    207

OTHER INPUT DEVICES
Many weird and wonderful input devices have been invented during the course of computing his-
tory, such as 100-button boxes, voice input, and virtual reality goggles. Here I will concentrate on
three supported by BricsCAD: digitizing tablets, 3D mice, and touch screens.

Digitizing Tablets
Even before mice were invented, digitizing tablets were the most popular way to control CAD
software. Other input devices in the 1970s and early 1980s included the light pen and of course
the keyboard.

Tablets are dual purpose, allowing users to input commands and draw-edit the model. They ranged
in size from a piece of paper to covering an entire desk.

  
Left: Intergraph workstation with two monitors and desk-size digitizer in the 1970s

(Image source design.osu.edu/carlson/history/lesson10.html)

Right: Typical 12"x12" digitizing tablet used in the 1980s with four-button puck, stylus, and connecting cables
(Image source www.biocomp.net/o12691.htm)

Pucks had a minimum of four buttons, and were available with 12 or 16 buttons. The pucks used
for input are precise (unlike today’s mice), because they use absolute positioning. (Mice use rela-
tive positioning — it doesn’t matter where the mouse is positioned on the desk.) Also available for
input was a stylus, like the styli used today with certain touch screen computers and mobile devices.

Some CAD users still employ the legendary digitizing tablet. It is, however, increasingly difficult to
use older models as most computers no longer have the serial port needed to connect the tablet;
you can buy serial ports as an add-on to for desktop computers.

Tablet support is included with BricsCAD, as described later.

3D Mice
The 3D mouse is designed to make work with 3D drawings easier. It features a puck that you move
up and down in the z direction, as well as twist and rotate for 3D view rotations.

In practice, you use two mice:

ÐÐ The regular “2D” mouse for choosing commands and picking objects

ÐÐ The puck of the 3D mouse for moving the viewpoint

Users typically employ the regular mouse with the right hand, and the 3D mouse with the left.

208    Customizing BricsCAD V20

The 3D mice range in size from simple wireless puck with two buttons to multi-button behemoths
sporting a customizable LCD display. The movement of the puck and the buttons can be customized.

  
Left: Two-button 3D mouse; right: multi-button 3D mouse with LCD screen (image source 3Dconnexion)

BricsCAD supports 3D mice from 3Dconnexion, but before it can recognize a 3D mouse, the 3Dcon-
nexion device driver must be installed on your computer. Driver software is included for com-
puters running recent releases of Windows, MacOS, and Linux. For support and downloads, see
http://www.3dconnexion.com/supported-software/mechanical-engineering/bricscad.html. You
may need to reboot your computer after installing the 3Dconnexion driver.

There are no controls in BricsCAD for 3D mice, with the exception of the Ctrl3DMouse variable;
it enables and disables the 3D mouse. The actions of the 3D mouse’s buttons and puck are defined
by the 3Dconnexion Properties software, as illustrated below.

	   
Settings for multi-button SpacePilot Pro mouse

Touch Screens

BricsCAD does not officially support touch screens. But they are common with computers running
Windows 8.x and 10, and so I thought I should touch on the subject here. Pardon the pun.

The touch actions supported by BricsCAD are just those supported by Windows itself. Below I list
the touch actions supported by Microsoft in Windows, and the reaction from BricsCAD.

	   11  Customizing Mouse, Double-click, & Tablet Buttons    209

Touch Action		 Effect in Windows			 Effect in BricsCAD			

One-finger actions
Tap			 Equivalent to clicking (selecting item)	 Picks points while drawing entities;
							 Selects individual entities and grips;
							 Selects UI elements, like ribbon buttons
Press and hold		 Equivalent to right-clicking		 Displays right-click menus;
							 Does not cancel or restart commands
Flick up or down 		 Scrolls page down or down		 Has no effect
Drag vertically		 Scrolls page up or down		 Moves drawing and dialog box scroll bars
Drag horizontally		 Selects text			 Selects text in command bar

Touch Action		 Effect in Windows			 Effect in BricsCAD			

Two-finger actions
Pinch			 Zooms in or out			 Zooms in and out
Rotate			 Rotates clockwise or counter-clockwise	 Has no effect
Hold and tap *		 Equivalent to press-and-hold		 Same as press-and-hold

*) Press the element with one finger, then quickly tap with another finger, while continuing to press the item with the first finger. Access shortcut menus like press

and hold and right-clicking.

While many screens support up to ten fingers touching at the same time, Windows supports just
one- or two -finger touches. Individual applications can support more simultaneous touches, if
they wish

Touch Pads
Mac computers do not support touch screens. The MacOS operating system does, however, sup-
port touch pads, whose actions are listed below. (Image source Logitech.)

Touch Action		 Effect in iOS			 Effect in BricsCAD			

One-finger Actions
Tap			 Equivalent to clicking (selecting item)	 Picks points while drawing entities;
							 Selects individual entities and grips;
							 Selects UI elements, like toolbar buttons
Two-finger Actions
Tap			 Equivalent to right-clicking		 Cancels and restarts commands
Double-tap		 Smart zoom to element		 Has no effect
Pinch			 Zooms in or out			 Has no effect
Rotate			 Rotates clockwise or counter-clockwise	 Has no effect

Three-finger Actions
Drag			 Moves elements, like dialog boxes	 Zooms in and out

Note: Four-finger actions are not supported by BricsCAD.

210    Customizing BricsCAD V20

Defining Actions for Mouse Buttons

In summary, you can assign the following types of actions to mouse buttons:

ÐÐ Single-click actions — to right and center buttons only

ÐÐ Shift, Ctrl, and Alt keystrokes — to assign additional actions to right and center buttons

ÐÐ Double-click actions — to the left button only

ÐÐ Commands, macros, and shortcut menus — can be assigned as actions to buttons

In BricsCAD, the Customize dialog box’s Mouse tab consists of three panes:

Customize dialog box showing the Mouse tab

ÐÐ Click pane (at the left) — lists the mouse buttons and key combinations that can be assigned actions

ÐÐ Available Tools pane (at the right) — lists all of BricsCAD’s commands sorted by menu name, and shortcut
menus; to assign a command or menu to a button, just drag it from this pane into the appropriate button in
the Clicks pane

ÐÐ Button Item pane (at the bottom) — edits button settings

TUTORIAL: BUTTON ASSIGNMENT
In this tutorial, you assign the Move command to the Ctrl+right button by following these steps:

1.	 From the Tools menu, select Customize. Notice the Customize dialog box.

	 (Alternatively, enter the Customize command, or enter the cui alias. Or, else right-click any toolbar, and then

choose Customize from the shortcut menu.)

2.	 Choose the Mouse tab. See figure above.

3.	 The mouse button you are defining will be pressed in conjunction with the Ctrl key, and so you need to ac-

cess the correct part of the pane. Do it like this:

	   11  Customizing Mouse, Double-click, & Tablet Buttons    211

a.	 Open the Mouse Buttons node by clicking the button.

Opening the Mouse Buttons node

b.	 Open the Ctrl-Click node.

Opening the Ctrl+Click node

	 Notice that under Ctrl-Click there are two blank entries: each button is labeled with ‘------’. The first ‘------’

refers to the right button and the second one to the middle button. Click and then look at the bottom pane,

where the button name is identified.

Identifying the right button

	 I think it is a bug in BricsCAD that the default actions are not listed. These default actions are turned on and

off with the CtrlMouse variable, as described by the boxed text earlier, “Summary of Mouse Variables.”

4.	 To attach the Move command to this button, drag the Move tool onto the button, like this:

a.	 In the Available Tools pane, open the Modify node.

Choosing a command from the list of Available Tools

b.	 Choose the Move tool.

c.	 Drag it to the correct button position under Ctrl+Click, as shown above. Notice that the Move command

now occupies the first mouse button position under Ctrl-Click (see figure above).

TIP  If you drag the tool to the wrong button, then no worries. Just drag it to the correct one.

212    Customizing BricsCAD V20

	 In the Button Item pane, notice that there are no properties for you to edit. BricsCAD changes the Button

property for you when you move the tool to another button.

No properties for new buttons

 5.	 With Move assigned to the Ctrl+Click right button, it’s time to test it:

a.	 Click OK to save the changes and exit the Customize dialog box.

b.	 In the BricsCAD drawing window, hold down the Ctrl key, and then press the mouse’s right button. The

Move command should start up.

TUTORIAL: ASSIGNING SHORTCUT MENUS TO BUTTONS
To attach a shortcut menu to a mouse button, follow the same steps as above. When it comes to
step 4, however, you do things just a touch differently. Follow these steps:

1. - 3. Follow the steps listed above.

4.	 In the Available Tools pane, scroll down to the last tool, which is named “Context.”

a.	 Open the node to see the list of shortcut menus (a.k.a. context menus).

Context (right-click) menus available in BricsCAD

b.	 Choose a menu tool, and then drag it to the desired button position.

Dragging a context menu to a button, from left to right

	   11  Customizing Mouse, Double-click, & Tablet Buttons    213

Tutorial: Writing Macros for Buttons
In addition to commands and shortcut menus, you can attach macros to buttons in two steps:

1.	 Drag any tool onto a button, as described in the tutorial “Defining Actions for Buttons.” The tool doesn’t

matter, just make sure it isn’t one taken from the Context node.

2.	 Edit the tool’s Command property:

A macro being written in the Command field

See Chapter 8 for information on writing macros.

CUSTOMIZING DOUBLE-CLICK ACTIONS
When you double-click an entity, BricsCAD performs an action that is related to the entity. For
instance, double-click a hatch pattern, and the Edit Hatch dialog box appears; double-click some
text and a text editor appears.

If an action is not defined for an entity, then BricsCAD displays the Properties panel. Not that there
is anything wrong with it; the Properties panel in fact is sometimes more powerful than the des-
ignated editing command.

Here is a list of the default double-click actions that don’t launch the Properties panel:

Entity				 Double-click Command		

Array (associative)			 ArrayEdit
Attribute definition		 DdEdit
Attribute in block			 EAttEdit
Block				 BEdit
Dimension			 DdEdit (edits dimension text)
Hatch pattern			 HatchEdit dialog box
Image				 ImageAdjust
LwPolyline (modern polyline)	 PEdit
Multiline leader			 DdEdit (edits leader text)
Polyline				 PEdit
Section plane object		 ClipDisplay (toggles clipping on and off)
Spline				 SplinEdit
Text (single-line text)		 DdEdit
Tolerance			 DdEdit (to edit the text in the tolerance)
Xref (external reference file)		 RefEdit

214    Customizing BricsCAD V20

Changing a Double-click Action
We are going to assign the Join command to the arc entity. Even better, we will turn it into a macro
that closes any arc that you double-click. Closing an arc makes it a circle.

To change the action assigned to a double-click, follow these steps.

1.	 Open the Customize dialog box with the cui alias, and then click the Mouse tab.

2.	 Scroll down until you reach the Double-click section.

3.	 Open the node. Notice the list of entity names.

Double-click section of the Customize dialog box

4.	 To change the action associated with an entity, select the name of the entity. For this tutorial select Arc.

5.	 You cannot just edit the Command property, because then the double-click action will not work, I find. In-

stead, follow these steps:

a.	 Click the Tool ID property. Notice the Browse button at the far right end.

b.	 Click the Browse button. Notice the Select Tool dialog box.

c.	 Go to the Modify node, and then choose the Join tool.

Selecting Join from the list of tools

d.	 Click OK.

6.	 Back in the Customize dialog box, notice that BricsCAD has filled in all the properties for the Join command.

Now you can edit the command macro to make it close arcs, like this:

a.	 Click in the Command field.

b.	 Add the text shown in blue:
		 ^C^Carc;cl;

	   11  Customizing Mouse, Double-click, & Tablet Buttons    215

c.	 And you’re done.

New command assigned

7. 	 Test the change you made, like this:

a.	 Click the OK button to exit the Customize dialog box.

b.	 Use the Arc command to draw an arc.

c.	 Double-click the arc: it should close into a circle.

Making a New Double-click Action
Not all entities are listed in the Mouse tab’s Double-click section. To see the full list — and to create
a new command that offsets xlines — follow these steps:

1.	 Right-click Double-click action.

2.	 Then choose Append double-click action from the shortcut menu.

Adding an entity to the list

	 Notice the Add Double-click Action dialog box.

Selecting a DXF name

3.	 Click the DXF Name droplist, and then choose an entity type. For this tutorial, scroll all the way down to XLine.

4.	 With the entity chosen, now it’s time to assign a command to the double-click action, and so choose the Cre-

ate New Tool radio button.

5.	 From the Toolbox droplist, chose a BricsCAD command to apply. For this tutorial, we’ll choose the Offset command.

6.	 Now fill out all the fields that are blank in the dialog box — Name, Title, Help, Command, and even Image —

because if you leave one or more blank, then the OK button remains unavailable.

	 (To add an image, click the Browse button at the far end of the Image field, and then chose an icon from the

hundreds provided by BricsCAD.)

216    Customizing BricsCAD V20

7.	 Click OK to close the dialog box. Notice that the Double-click Action pane has all of its fields filled in, because

you filled them out.

Completed macro

8.	 If you wish, edit the Command macro to provide the Offset command with a set offset distance, and so on.

9. 	 Your final step is to test the change you made, like this:

a.	 Click the OK button to exit the Customize dialog box.

b.	 Use the XLine command to draw a construction line, and then press Esc to end the command.

c.	 Double-click the xline: the Offset command should launch, prompting you for the offset options.

Defining Actions for Tablet Buttons

Tablet digitizer buttons are customized in the Tablet tab, as illustrated below.

Customize dialog box showing the Tablet tab

Now, normally there are no entries under Digitizer Buttons and Tablet Menus, because BricsCAD
includes nothing for tablets with the Default profile. If you use a tablet, then you need to download
the partial CUI files for tablet buttons and drawings overlays from the Bricsys Web site.

At time of writing, the Web site no longer appeared to host the file, so you can download it from
my cloud account:

https://my.pcloud.com/publink/show?code=kZ5k2hkZaJFXkmOS6S5zNw8TXAWWMm3bP8WV.

	   11  Customizing Mouse, Double-click, & Tablet Buttons    217

After the Tablet.zip file is downloaded, unzip it. Notice that it contains two partial .cui files — tablet.
cui and tablet(acadLike)cui — along with several support files that not necessary right now.

Listing of files inside the Tablet.zip archive

Back in BricsCAD, open the Customize dialog box, and then click File | Load Partial CUI File (or
use the MenuLoad command).

Loading a partial .cui file

In the Choose A Customization File dialog box, select tablet.cui and then click Open. Notice that
the Customization dialog box now lists two sections for tablet buttons and menus.

Button and menu definitions added to support digitizing tables

TIP  Use the Tablet command to configure and calibrate the overlay on the surface of the tablet. This
command works only after a tablet is attached to the computer, and its drivers have been installed, includ-
ing WinTab32.dll. See “Digitizing Tablet” in the BricsCAD User Guide portion of the online help system.

218    Customizing BricsCAD V20

220    Customizing BricsCAD V20

To attach commands, macros, or shortcut menus to buttons, follow the steps described in the for
mouse buttons — just do your work in the Click section of Digitizer Buttons, as illustrated below.

Default puck button assignments

The properties for digitizer buttons are pretty similar to that of mouse buttons:

Puck button properties

The tablet overlay drawing provided by Bricsys is illustrated on the other pages. Use overlay(cm).
dwg for metric drawings and overlay(inch).dwg for Imperial drawings.

Customizing the Quad

CHAPTER SUMMARY

This chapter covers the following topics:

•	 Understanding how the quad works

•	 Customizing the commands and groups displayed by the quad

The trend in CAD user interface design is to move more of the action to the cursor, and so
Bricsys developed the Quad interface to do just that: it allows us to select commands very near to
the cursor.

The Quad is somewhat customizable, though sadly not as fully customizable as are menus or tool-
bars. BricsCAD uses workspaces to determine which groups of commands are displayed by the
Quad, just as with the ribbon. This means that commands specific to sheet metal that appear in the
Sheet Metal workspace, BIM commands for the BIM workspace, and so on.

Quad also uses entity recognition to determine which commands are suitable at the moment, es-
pecially when it comes to editing. Select 3D solid, and solid editing commands appear.

The content of the Quad’s interface is changed through the Customize dialog box, and this is the
subject of this chapter.

CHAPTER 12

222    Customizing BricsCAD V20

QUICK SUMMARY OF QUAD VARIABLES

To turn the Quad cursor on and off, press the F12 function key; there is no “Quad” command. The following variables
control the look of the Quad.

QuadAperture — specifies the area to search around the cursor for entities, sized in pixels

QuadCommandLaunch — determines if Quad launches with the application

QuadCommandSort — specifies sort order of commands

QuadDisplay — toggles display of the Quad cursor

QuadExpandDelay — specifies the delay before expanding the Quad, in milliseconds

QuadExpandTabDelay — specifies the delay before expanding underlaying buttons

QuadExpandGroup — specifies how groups expand

QuadGoTransparent — toggles whether Quad go transparency as cursor moves away

QuadHideDelay — specifies the delay to display the Quad following mouse movement, in msecs

QuadHideMargin — specifies the area in which the cursor keeps the Quad alive

QuadIconSize — toggles the Quad between displaying small, large, or extra large icons

QuadIconSpace — specifies spacing between icons

QuadMostRecentItems — determines the number of most-recent items on the Quad

QuadPopupCorner — locates the Quad relative to cursor

QuadPropertyUnits — determines the automatic formatting of units when InsBase is not zero

QuadShowDelay — specifies the Quad’s display delay after an entity is highlighted

_QuadTabFlags — determines style of Quad

(new in V20) TooltipDelay — specifies the delay before tooltips appear, in msecs, in Quad, ribbon, and Properties

QuadWidth — specifies the width of the Quad, in columns

ON THE STATUS BAR

On the status bar, click QUAD to turn it on and off. Right-click the button to reveal this shortcut menu:

	 Show Quad on Hover — QuadDisplay = 1
	 Show Quad on Select — QuadDisplay = 2
	 Show Quad on Right-click — QuadDisplay = 4
	 On / Off — toggles display of Quad, like clicking QUAD on the status bar (QuadDisplay = -1)
	 Customize Quad Items — displays Workspaces tab of Customize dialog box for changing the com-

mands and groups displayed by the quad
	 Settings — goes to the Quad section of the Settings dialog box

	   12  Customizing the Quad    223

ABOUT THE QUAD
The Quad interface is unique to BricsCAD. It incorporates information about entities, along with
drawing and editing functions into a rectangle that’s right next to the cursor.

The Quad cursor, fully expanded

STEP 1: MOVE CURSOR ONTO AN ENTITY
Most of the time, the Quad is not visible; most of the time, you see the usual crosshair cursor. When,
however, you pass the cursor over an entity, the entity highlights and the Quad appears as a single
button. See figure below. (If you do not see the Quad, then turn it on clicking QUAD on status bar
or pressing the F12 function key.)

Initial appearance of the Quad

The initial button shows two things:

ÐÐ Last-used Command — on the left is the command (shown by the icon) that you last accessed on the Quad

ÐÐ Rollover Tooltip — to the right of the icon are several properties of the highlighted entity (if RT is turned
on at the status bar)

Last-Used Command. The single button is the icon of the last-used command. By clicking it,
you can quickly repeat the last command multiple times.

Rollover Tooltip. The name and the list of the entity’s properties are together called
a “rollover tooltip,” because it appears when the cursor “rolls over” an entity. (If the rollover tooltip
does not appear in the Quad, then click the RT button on the status bar to turn it on.)

224    Customizing BricsCAD V20

By moving the cursor into the rollover tooltip, you can change the properties of the highlighted
entity. Click on a property values, such as Color, to see a droplist of options.

Changing the properties of the highlighted entity

You can change the properties listed by the Quad on a property-by-property basis. See Chapter 13
for more on using and customizing rollover tooltips (a.k.a. quick properties). I don’t find rollover
tooltips useful, and so tend to keep RT turned off.

Step 2: Expand the Quad
As you move the arrow cursor into the lonely last-command-used button, the Quad expands to show
additional buttons. Usually, these are the commands that are commonly used with the highlighted
entity. Click a button to execute its command.

Quad expanding when the cursor passes over it

Step 3: Move Into Groupings
Below the first row of commands is a row of blue boxes. These are headings, and they hold groups
of related commands. When you move the arrow cursor down into a blue box,such as Modify, more
commands appear, in this case related to modifying entities. Some groups of commands are for
operations common to any entity, while others might be specific to the entity that is highlighted.

  
Quad expanding further when the cursor across the blue headings

The commands you see in the Quad vary according to the workspace. See Chapter 14 on workspaces.

Identifying Icons. To see the meaning of an icon, pause the cursor over a button, and then read
the description in the tooltip.

Viewing the meaning of a button

	   12  Customizing the Quad    225

TUTORIAL: DRAWING WITH QUAD
The Quad can start up drawing commands, as well as editing ones. The process, however, is dif-
ferent from using the Quad for editing, because there is no existing entity over which to hover! To
draw with the Quad, follow these steps:

1.	 Turn on the Show Quad on Right-click option by right-clicking QUAD on the status bar, and then selecting the

option.

Turning on Quad’s ability to draw entities

2.	 Right-click in the drawing area. Notice that the Quad appears with drawing commands.

Quad displaying drawing commands

3. 	 Select one, and then begin drawing the entity.

Tutorial: Dimensioning with Quad
The Quad is especially handy for dimensioning entities quickly. The speed is due to two presets: di-
mensioning commands use the Entity option by default, and the Quad knows which entity is selected.

To dimension an entity, follow these steps:

1.	 Pause the cursor over the entity.

2.	 Move the cursor into the Quad’s Draw section.

Selecting a dimensioning command from the Quad

3.	 Click a dimensioning command. Notice that it was dimensioned without you having to select the entity.

Entity is dimensioned

The same thing happens when dimensioning a line with two extension lines: all it takes is a single
click.

226    Customizing BricsCAD V20

MODIFYING THE QUAD’S BEHAVIOR
To make the Quad work differently from its default settings, take a look at the Quad section of the
Settings dialog box. The fastest way to get there is to right-click QUAD on the status bar, and then
choose Settings in the shortcut menu.

Accessing Quad settings quickly

In the Settings dialog box, you can change the look of the Quad through the following variables:

ÐÐ Display the Quad only when an entity is selected (QuadDisplay variable = 2)

ÐÐ Have the Quad pop up at a different location (QuadPopUpCorner)

ÐÐ Make the Quad icons larger or smaller, tighter or wider (QuadIconSize and QuadIconSpace)

ÐÐ Control the appearance of rollover properties (RolloverTips and RollOverOpacity)

See boxed text for the full list.

Customizing the Quad

The Quad has been under a great deal of development from when it was first introduced. It seems to
get new functions with every release. For instance, the Quad Reactors section was added to BricsCAD
V17. But in terms of customization, V17 removed the Quad tab from the Customize dialog box, and
moved its content to the Workspace tab, under Quad Groups. But with V18 the Quad tab returned!

Until V18, all parts of the Quad were hard-coded, meaning we could not change them. Despite its
presence in the Customize dialog box, the only customization available was whether (or not) to
display predefined groups.

With V18, full customization became available:

ÐÐ You can add and remove buttons from groups

ÐÐ Create and destroy groups

ÐÐ You cannot, however, edit the properties of existing buttons, such as the Title or Command fields

	   12  Customizing the Quad    227

To customize the Quad, enter the Customize command and then choose the Quad tab. Alternatively,
right-click the Quad itself (or right-click QUAD on the status bar), and then choose Customize
Quad Items.

Accessing the Customize dialog box from the Quad

When you do, the Customize dialog box appears at the Quad tab. Notice that the Quad Button
properties are grayed out, indicating that they cannot be edited by you.

Quad tab showing uneditable properties for buttons

Tutorial: Customizing Quad Buttons
To add buttons to the Quad, follow these steps:

1.	 Right-click the name of a button, and then choose Insert.

Right-clicking a Quad button

2. 	 Notice the Add Quad Button dialog box. Choose a command (a.k.a. “tool”) from the list, and then click OK.

Dialog box for adding buttons to the Quad

228    Customizing BricsCAD V20

3.	 Back in the Customize dialog box, the added tool appears above the one you selected.

Tool added to the Quad

4.	 Click OK to exit the Customize dialog box, and then check the Quad to make sure the new button works.

Deleting Buttons. To remove buttons from the Quad, follow these steps:

1.	 Right-click the name of a button, and then choose Delete.

Choosing a Quad button to remove

2. 	 Notice the warning dialog box:

Agreeing to the question

	 Click Yes to finalize the removal.

CUSTOMIZING QUAD TABS
A tab is a group of buttons. Think of tabs as toolbars or ribbon panels. Typically, similar commands
inhabit a tab, such as for editing or for constraints. The figure below shows tabs named Model,
Draw, and so on.

Tabs in the Quad

To edit tabs in the Quad, follow these steps:

1.	 In the Customize dialog box’s Quad tab, right-click the name of a tab. Notice the options available:

Right-clicking a Quad button

	   12  Customizing the Quad    229

	 The options have the following meaning:

ÐÐ Insert Quad Tab — adds a new tab, empty of commands

ÐÐ Insert Copy — makes a copy of the selected tab, and then prompts for a new name

ÐÐ Delete Quad Tab — removes the tab from the Quad

ÐÐ Append Quad Button — adds a button to the current tab; see the previous tutorial

Tutorial: Adding Tabs. To add a tab to the Quad, following these steps:

1.	 Right-click a tab name, and then choose Insert Quad Tab from the shortcut menu.

2. 	 Notice the Add Quad Tab dialog box. Enter a label and a title.

Naming the new tab

	 For this tutorial, enter the following:

	 Label	 New Tab

	 Title	 Tab tutorial

3.	 Click OK to dismiss the dialog box. Back in the Customize dialog box, notice that the new tab name is added

above the one you selected.

New tab added to the list

	 In the Quad Tab properties pane, the Label and Title fields appear with the names you gave them.

4.	 The tab is unpopulated, so add a button by following these steps:

a.	 Right-click the new tab, and then select Append Quad Button.

Adding a button to the new tab

230    Customizing BricsCAD V20

b.	 Notice the Add Quad Button dialog box. For this tutorial, choose a drawing command, such as Draw > Ray.

Selecting a drawing command

c.	 Click OK to close the dialog box. Back in the Customize dialog box, notice that the new tab sports the

new button.

At this point in the tutorial, we pause.

Where’s My New Tab?
You might think that the new tab will now appear in the Quad, like a new menu or a new ribbon
panel — but not so fast. Probably, it won’t. That’s because the appearance of a tab depends on how
the workspace is set up.

Is the tab part of a workspace? The appearance of tabs is controlled by the workspace, as described
next.

Tutorial: Turning On Quad Groups (Tabs)
The Workspace tab of the Customize dialog box specifies which Quad tabs are allowed to be dis-
played. (Quad tabs used to be called “groups.”) No tab is seen until its name is added to the Quad
Tabs section of a specific workspace. If you want the tab in every workspace, then you have to add
it over again to each one.

1.	 In the Customize dialog box, click the Workspace tab.

2.	 Open the Drafting workspace by clicking the + (node) next to it.

Quad Tabs section of the Workspaces tab

	   12  Customizing the Quad    231

3.	 Open the Quad Tabs section. Notice that the new tab you created is not listed. Similarly, when you scroll

through the Available Tools listing, it is not there, either.

4.	 Right-click Quad Tabs, and then choose Append Quad Tab from the shortcut menu.

Getting ready to append a tab

5.	 Notice the Select Quad Tab dialog box, which lists the names of tabs you can add to the workspace. The

tabs are listed in alphabetical order by their labels (such as “Tab tutorial”), rather than by their titles (such as

“New Tab”), because labels are more descriptive.

Selecting the tab to add

	 Select “Tab tutorial” and then click OK.

6.	 Notice that the tab is added to the workspace, under the name of “New Tab.”

“New Tab” added to the 2D Drafting workspace

7.	 Let’s see if the new tab appears in the Quad. Click OK to close the Customize dialog box.

8.	 In the BricsCAD drawing area, right-click to display the Quad in drawing mode. Move the cursor to display

the tabs, and then the content of the “New Tab” tab.

New Tab successfully added to the Quad

232    Customizing BricsCAD V20

Toggling Quad Tabs
You have to add a tab to the Quad Tabs section to make it appear in the Quad. But you don’t need to
remove it to hide it. Instead, change the value of its Display parameter, as shown in the figure below:

Toggling the visibility of a Quad tab

When you remove a tab from the Quad Tabs section in the Workspace tab...

Deleting a Quad Tab from a workspace

...BricsCAD asks if you are sure:

Confirming the deletion

However, if you are removing the last reference of a Quad tab in all workspaces, then the situation
gets really serious:

Are you r-e-a-l-ly sure?

For some reason, BricsCAD erases the tab (group) definition from the Quad tab, as well as from
the workspace. This seems rather extreme to me, and I don’t know why BricsCAD is programmed
to do this.

A workaround is to create a dummy workspace, and store your custom Quad tabs in it.

	   12  Customizing the Quad    233

ABOUT QUAD ENTITY FILTERS
Entity filters are what BricsCAD uses to determine which commands to display. An entity filter is a
piece of programming code that reacts to (filters) the entity found under the cursor. For example,
when the selected object is text, then the Quad shows commands specific to text — in addition to
the All Entities section.

(Entity filters were named “Quad Reactors” in BricsCAD V17, and prior to V17 were known as
“Custom.” In those releases, reactors could only be toggled on or off. Even today, in one shortcut
menu they are called “Custom Alias,” and in one dialog box, they are called “Entity Alias.”)

You can customise filters for Quad commands (buttons) that you create. Quad items that are built
by Bricsys cannot be changed, and so are shown in gray, as illustrated below.

Filters cannot be edited for pre-made Quad buttons

Tutorial: Changing Entity Filters
To specify the entities that your custom Quad button should recognize, follow these steps:

1.	 In the Quad tab of the Customize dialog box, select a command in your custom Quad Tab. For this tutorial,

the Quad Tab is named “Tab tutorial.”

Select a Quad Button item

2.	 Look down to the Quad Button pane. Notice that you cannot change any property, except Entity Filter. (The

other properties are grayed out.)

3. 	 Select Entity Filter, and then click the Browse button (found at the right end of the field).

234    Customizing BricsCAD V20

4.	 Notice the Edit Quad Button Filter dialog box, and that it lists the generic “No_Selection” filter.

Current state of custom filter

5.	 You can add a generic filter for all entities, and/or add specific entities to be filtered.

a.	 To add a generic filter, click the Add Filter button.

b.	 Notice that the new dialog box also sports the title, Add Quad Button Filter.

Choice of filters

	 The content of this dialog box is not documented, and so I am only guessing at what the options mean:

Available Filter	 Meaning						

Ojects_Any		 For common editing commands, such as Move and Erase;
			 (this filter was formerly named ALL_ENTITIES)
Object_Any		 For entity-specific editing commands, such as PLine and AttEdit
No_Selection		 For drawing commands, where no entity is selected initially;
			 (this filter was formerly named NO_SELECTION)

	 You can also type in the name of your own “custom filter,” which I think is meant for third-party developers.

c.	 Click OK to close the dialog box. Notice that your selection is added to the list.

Filter added to the list

	   12  Customizing the Quad    235

d.	 Now click the Add Entity Type(s) button. Notice the Add Entity Alias dialog box.

Choosing an entity

e.	 Choose one or more entities to which your Quad button should react, such as Arc.

f. 	 Click OK. Notice that again the item is added to the filter list.

Arcs added to the filter list

g.	 To remove a filter from the list, select it and then click the Remove button. Remove the No_Selection

and Object_Any filters, leaving on the Object_Arc filter.

6.	 Click OK to close the Edit Quad Button Filter dialog box, and then click OK to close the Customize dialog box.

7.	 Test the change you make to the button’s property by drawing a line and an arc. Your custom Quad tab ap-

pears when you pause the cursor over the arc, but not over the line.

  
Left: New Tab tab appearing for an arc; right: ...but not for the line

236    Customizing BricsCAD V20

How the Quad Works. Or, How Does It Know What Entity Is There?
Pieter Clarysse of Bricsys explains: “The cursor makes use of C++ reactors to determine which enti-
ties are nearby. The icons that appear are appropriate to the entity.

“For example, if the cursor is near an intersection, it will display the Chamfer and Fillet commands.
When the cursor is over a gap between two entities, it will have the Trim and Extend commands;
the size of the gap (aperture) it recognizes can be adjusted in the Settings dialog box.”

To select the entity that is under the cursor in macros, use the ^S metacharacter, which is unique
to BricsCAD. It is unique, because ^S selects the entity without you needing to pick it. This allows
for actions like dimensioning entities with a single pick: the pick consists of selecting the dimen-
sioning command from the Quad.

Customizing Rollover
Properties

CHAPTER SUMMARY

This chapter covers the following topics:

•	 Understanding how rollover tooltips work with the Quad

•	 Customizing the information displayed by rollover tooltips

All entities in CAD drawings carry properties, such as color and linetype. BricsCAD provides
several ways to view the values of properties:

DbList command — lists names and properties of all entities in the drawing in the Prompt History window

List command — lists names and properties of selected entities in the Prompt History window

Properties panel — displays and changes most properties interactively in a panel

Rollover Tooltips (a.k.a. “quick properties”) — displays selected properties in the Quad

In this chapter, we concern ourselves with customizing rollover properties through the Customize
dialog box.

CHAPTER 13

238    Customizing BricsCAD V20

QUICK SUMMARY OF ROLLOVER PROPERTY SETTINGS

To turn on Rollover Tooltips, click the RT button on the status bar. There are no commands for rollover tooltips. The
variables that control the operation and look of rollover tooltips are available through the Settings dialog box:

The RolloverTooltips variable determines when the properties appear:

RolloverTooltips		 Properties are...					

0			 Properties not displayed by the Quad
1			 Properties displayed while the cursor hovers over an entity
2			 Properties displayed when the cursor enter the Quad’s title bar

The RolloverOpacity variable determines the see-thru-ness of the tooltip:

RolloverOpacity		 Tooltip is...					

100			 Opaque (default)
10			 Translucent (minimum value)

The RolloverSelectionSet variable determines the types of properties displayed::

RolloverSelectionSet	 Properties displayed...					

0			 None
1			 Only General properties (default)
2			 All properties shared by the selected entities *

*) Bricsys notes that large selection sets may cause slow reaction

Rollover properties are handy for seeing the properties of a single entity over which the cursor is
hovering (rolling over). Rollover properties are rolled into the Quad: when you hover the cursor
over an entity, a short list of its properties are displayed for you. Two examples are shown below.

  
Left: Properties of a linear dimension; right: ...and a polyline

While the DbList, List, and Properties can display properties of more than one entity, rollover
properties are limited to a single entity. Despite the single-entity limitation, rollover properties are
handy, because we can change the properties that are displayed right there in the Quad.

	   13  Customizing Rollover Properties    239

You can have the rollover display as many properties as you want; the limit is the height of your
computer’s screen.

Extreme example of a rollover displaying many properties of a circle

The properties displayed by the rollover tooltip can be edited. (Those shown in gray cannot; they
are read-only.)

Changing the transparency of a circle

The display of rollover properties are turned on and off in these ways:

ÐÐ Click the RT button on the status bar

ÐÐ Change the value of the RolloverTooltips variable

There is no command that toggles rollovers. The QuadIconSize variable has no effect on the size of
rollover properties. The properties content of the rollovers’ are customized with the Customize
command.

240    Customizing BricsCAD V20

QUICK SUMMARY OF ROLLOVER PROPERTIES

The properties displayed by rollover tooltips are changed
through the Customize dialog box’s Properties tab.

Shown at right are the entities and sub-entities available in Bric-
sCAD. The properties of one entity, the path array, are shown
entity is to the far right.

There are a couple of things to be aware of:

•  A green checkmark indicates the property is displayed by
rollover tooltips.

•  Some entities are “hidden” inside others. For example, multiline
leaders are found inside the Leaders section, and mtext is found
in the Text section.

•  Parts of 3D entities, like edges and faces, have their own
categories at the end of the list.

	   13  Customizing Rollover Properties    241

Customizing Rollover Properties

You use the Properties tab of the Customize dialog box to change the properties displayed by
rollover tooltips. The customization is done on an entity-by-entity basis (with the one exception
noted in the Tip below), so in most cases you need to take two steps:

Step 1. Select the entity of which you want to change the properties displayed; and then...

Step 2. Select the properties you want displayed for the entity by the Quad

TIP  The Entity “entity” is at the very top of the list, and has a special function. When you turn its proper-
ties on or off, it affects all entities. For example, choose Entity, and then click Linetype to turn it on. The
Linetype property is now turned on for all entities in BricsCAD. This trick is handy when you want all enti-
ties to display the same set of general properties.

		

By default, all entities have most properties are turned off due to the overwhelming number of
properties that are available! How overwhelming? The facing page lists all of the entities available
in BricsCAD, while adjacent to the list are the properties for just one of them, a path array. Now,
the number of properties varies wildly between entity types, from a just few to many: dimension
entities, for instance, have nearly 100 properties each.

TUTORIAL: HOW TO CHANGE PROPERTIES DISPLAYED BY
ROLLOVERS
For this tutorial, you will change the properties of helixes. The default properties for the helix entity
are shown below: color, layer, base radius, top radius, and height. To customize the properties listed
by the rollover tooltip, follow these steps.

Default set of properties displayed for a helix

In this tutorial, you turn off the Color property, and turn on the Total Length property.

1.	 Enter the Customize command to open the Customize dialog box.

2. 	 Choose the Properties tab. Notice that there are two panes:

The Properties tab of the Customize dialog box

ÐÐ Entity pane (at left) lists the names of all entities handled by BricsCAD

ÐÐ Rollover pane (to the right) lists all properties that apply to the selected entity

When no entity is selected, the properties pane displays only the General properties, those that
are common to all entities.

3.	 In the entities pane, select Helix. Next door in the Rollover pane, notice that certain properties that are

turned on by default for helixes.

Properties for the helix

4.	 In the General section of the properties pane, click Color to turn it off (so that no check mark shows).

Turning off the Color property

5.	 In the Geometry section, click Total Length to turn it on (so that a check mark shows).

Turning on the Total Length property

6.	 Click OK to exit the dialog box.

7.	 Test your customization!

a.	 Draw a helix.

b.	 Pause the cursor over it.

	 Notice that the Quad no longer reports the color, but now shows the total length of the helix instead. (If the

Quad does not appear, then click QUAD on the toolbar, or else press F12 on the keyboard.)

Properties for a helix, as customized by you

Notes

Customizing Multiple UIs
with Workspaces

CHAPTER SUMMARY

This chapter covers the following topics:

•	 Understanding how workspaces change the user interface

•	 Customizing workspaces

BricsCAD is a general CAD engine designed to work with many different disciplines. It can
be used for architectural modeling, for mechanical design, for mapping — all of which employ
different sets of commands. When it comes to the user interface itself, you might prefer to work
with toolbars or with the ribbon; you might want the drawing area shown by a gradient of colors
or in a solid color.

Workspaces let you customize the user interface to your liking, and switched between them quickly.
BricsCAD comes with several workspaces already defined for general drafting, 2D mechanical
design, 3D general modeling, and 3D BIM modeling.

In this chapter, you learn how to customize workspaces to your liking.

CHAPTER 14

246    Customizing BricsCAD V20

QUICK SUMMARY OF WORKSPACE COMMANDS & VARIABLES

The names of workspaces changed with BricsCAD V20:

Old Workspace Name	 New Workspace Name		 Default Display			

2D Drafting		 Drafting			 Ribbon
...			 Drafting (Toolbars)		 Menu bar and toolbars, no ribbon
...			 Modeling			 Ribbon
3D Modeling		 Modeling	 (Toobars)		 Menu bar and toolbars, no ribbon
BIM			 BIM			 Ribbon
Mechanical		 Mechanical		 Ribbon
Sheetmetal					 (removed from V19)

The Sheet Metal workspace was removed from V15, returned with V16, and then removed again from V19. BricsCAD
V17 disabled the On Switch parameter; is still present but is inoperative.

You can switch between workspaces with the status bar and a toolbar:

On the status bar, right-click the name of a workspace, and then choose another one

In the Workspaces toolbar, click the droplist and then choose the name of a workspace

There is no way to change the workspace from the ribbon or the menu bar. The U (undo) command does not reverse
workspace changes.

COMMANDS

The following commands work with workspaces:

Workspace — saves, renames, deletes, and sets the current named workspace.

WsSave — the current user interface as a named workspace.

WsSettings — opens the Customize dialog box at the Workspaces tab (and not the Settings dialog box, oddly
enough)

VARIABLES

The following variables work with workspaces:

WsCurrent variable — specifies the name of the current workspace.

WsAutoSave variable — determines if changes to the user interface are save to the workspace.

	   14  Customizing Multiple UIs with Workspaces    247

Workspace Customization Elements

Workspaces are created and modified in the Workspaces tab of the Customize dialog box. It lists
the user interface elements that can be displayed, and additional options determine if the elements
actually are displayed by the workspace. In this chapter, we learn how this works.

Elements of workspaces displayed by the Customize dialog box

ADDING AND REMOVING WORKSPACES
You can add and remove workspaces by right-clicking a workspace name in the Customize dialog
box, and then choosing an option from a shortcut menu.

Removing Workspaces
To remove a workspace, follow these steps:

1.	 Right-click the workspace name and then choose Delete.

Removing a workspace

2.	 BricsCAD displays the “Are You Sure?” dialog box:

Getting a second chace

	 Answer Yes or No.

You recover the removed element with the Manage Your Customizations button, as described in
Chapter 9.

248    Customizing BricsCAD V20

Adding Workspaces
To add a workspace, follow these steps:

1.	 Right-click the name an existing workspace name, and then choose Insert Workspace.

Starting to insert a new workspace

2.	 BricsCAD displays the Add Workspace dialog box for you to give it a name. If you click OK without entering a

name, the workspace is not created.

Naming the new workspace

Notice that it is inserted above the workspace that you selected. The new workspace contains the
following elements:

ÐÐ All menus

ÐÐ The set of toolbars shown below

ÐÐ The panels shown below, all set to “Don’t Change”

ÐÐ No ribbon elements

ÐÐ No Quad items

Default elements of a new workspace

	   14  Customizing Multiple UIs with Workspaces    249

About Insert Separator
The Insert Separator option adds a line as a row of dashes. It is visible only in the Customize dialog
box; the line does not appear in the Workspace toolbar or on the status bar.

Separator added to the Workspaces tab

You use the separator as a guide to visually separate groups of workspaces.

TOGGLING THE DISPLAY OF UI ELEMENTS
The Workspaces tab’s primary purpose is to toggle the display of user interface elements on and
off independently in each workspace. You turn elements on and off by these methods:

Method 1. Include the UI element in the workspace

Method 2. Toggle the Display parameter to On or Off (not all elements offer this parameter)

In the following section, we look at both methods.

Workspace Property Toggles
When you choose the name of a workspace in the Customize dialog box, the Workspace pane
displays a long list of properties (greatly expanded in V20). You can think of these properties as
master toggles.

Default properties of a new workspace displayed by the Customize dialog box

250    Customizing BricsCAD V20

Workspace properties have the following meaning:

Workspace Property	 Meaning								

Name			 Name of the workspace displayed in the workspace list in the status bar and by
			 the Workspace toolbar (reported by the WsCurrent variable)

Display		 Determines if the workspace name is displayed by the status bar and toolbar droplists:
			  •  Yes
			  •  No
			 (Note: When this property is turned off, the name of the workspace is still recognized
			 by the Workspace command.)

Description		 Help-like description displayed in the status bar

ID			 Identifies the element in the CUI file, which stores all of these customizations;
			 the “ws” prefix marks this element as a workspace

Menu Bar		 Toggles the display state of the menu bar (also toggled by the MenuBar variable):
			  •  On shows the menu bar when entering this workspace
			  •  Off hides the menu bar when entering this workspace
			  •  Don’t Change the display state when entering this workspace

Scrollbars		 Toggles the display of scroll bars (also toggled by the ScrollBars variable):
			  •  On shows the scroll bar when entering the workspace
			  •  Off hides the scroll bar
			  •  Don’t Change the display state when entering this workspace

Default		 Toggles whether this workspace is the default one when BricsCAD starts:
			  •  Yes shows this workspace when BricsCAD starts
			  •  No does not show this workspace

Stack Type		 Determines how panels are displayed (reported by read-only StackPanelType variable);
			  •  Fixed resizeable panelset prevents the panel from collapsing (0)
			  •  Collapsable panelset allows the panel to collapse into a set (1)
			  •  Flyout panelset places the panel in a flyout; see figure below (2)

  
Left: Small panel icons; right: extra-large panel icons

Panel Button Size	 Specifies initial size of buttons on panels (reported by read-only PanelButtonSize variable);
			  •  Small displays 16x16 icons (0); see figure above
			  •  Large displays 24x24 icons (1)
			  •  Very Large displays 32x32 icons (2)

	   14  Customizing Multiple UIs with Workspaces    251

Tool Button Size		 Specifies initial size of buttons on toolbars (reported by read-only ToolButtonSize variable):
			  •  Small displays 16x16 icons (0)
			  •  Large displays 24x24 icons (1)
			  •  Very Large displays 32x32 icons (2)

Toolbar Margin	 	 Specifies margin above and below each toolbar; measured in pixels (reported by
			 read-only ToolbarMargin variable)

Tool Padding		 Specifies margin between icons on each toolbar; measured in pixels; (reported by
			 read-only ToolIconPadding variable)

Above: Toolbar with normal spacing
Below: Toolbar with padding = 5 and margin = 5

TIP  Use the Toolbar Margin and Tool Padding values to increase the space around toolbar buttons,
which can make them easier to touch with a finger on a touchscreen monitor. For this, you could create a
workspace named “Drafting (Touchscreen).”

(new in v20) The following workspace properties are specific to variables used by the Mechanical
edition of BricsCAD. These settings are not documented by Bricsys.

Delete Tool	 	 Specifies what to do with tool entities following the Subtract command:
			 •  0 does not delete tool entities
			 •  1 deletes tool entities

DMAUDIT Level	 	 Specifies messages to display:
			 •  0 reports errors
			 •  1 ignores dynamic range errors
			 •  2 ignores sliver faces
			 •  3 ignores both

Extrude Mode	 	 Determines what happens during the Extrude command:
			 •  0 unites newly created solids with existing ones
			 •  1 creates new solids when extruding a contour laying on a solid
			 •  2 subtracts newly created portions from intersected solids
			 •  4 do not modify intersecting solids

DMPUSHPULL Subtract	 Specifies whether to enable subtract mode in DmPushPull command:
			 •  0 does not subtract
			 •  1 subtracts

Generate Associative Drawings  Toggles associativity of generated drawings with the 3D model.

Report Panel Mode	 Determines the look of the Report panel:
			 •  0 Classic mode (dockable window)
			 •  1 Modern mode (transparent panel)
			 •  2 Hidden mode (hidden in status bar)

Selection Modes		 Specifies the subentities to highlight during entity selection:
			 •  0 selects the entire 3D model
			 •  1 select edges
			 •  2 select faces
			 •  4 detect boundaries
			 •  8 select vertices

252    Customizing BricsCAD V20

Sheet Set Manager Open	 Toggles whether the Sheet Set Manager panel is opened automatically when a drawing from
			 a sheet set is opened.

Structure Tree Config	 Names the .cst structure tree configuration file to use

Components Config	 Names the .ccf components configuration file to use

Warning Message Level	 Determine which warning messages to display; see figure below:

Options of the warning messages variable

Show Menus
Several shortcut menus in the Workspaces tab have an option called “Show,” such as Show Menu
and Show Toolbar.

  
Shortcut menu in Workspaces tab to access a specific menu or toolbar

These options have nothing to do with the visibility of menus, toolbars, or other UI elements; instead,
it switches (in this case) to the Menu tab of the Customization dialog box and to the specific menu
(“File,” in the figure above), so that you can customize the content of the File menu.

TOGGLING VISIBILITY OF UI ELEMENTS
The whole purpose of workspaces is to determine what UI elements are displayed, and how. When
these elements are listed in the Workspaces tab, then they will (probably) appear in the workspace
— unless the Display property is set to “No.” But there are some subtleties for each type of ele-
ments. Let’s go through them.

Toggling Menus
The Menus node determines which menu drop-downs are displayed, such as File and Edit. When
a menu name appears in this list, it is displayed by the workspace. Toggle the display of the menu
bar through the Properties pane of the workspace

	   14  Customizing Multiple UIs with Workspaces    253

To make changes to a menu, use the Show Menu shortcut (as described above) to get to the Menu
tab; see Chapter 6.

Toggling Toolbars
The Toolbars node determines which toolbars are displayed by the workspace. When a toolbar
name appears in this list, it is displayed by the workspace. You can change the content of toolbars
with the Toolbars tab; see Chapter 7.

Toggling Panels
The Palettes node determines which panels (a.k.a. palettes or bars) are displayed through the use
of a three-way toggle:

Shortcut menu for palette items

 means the panel will be displayed when switching to this workspace

 means the panel is not displayed

 means the panel display state is not changed (i.e., if off when entering the workspace, then it stays off)

Toggling Ribbons
The Ribbon node determines which ribbon tabs are displayed by the workspace. When the name
of a ribbon’s tab appears in this list, then it is displayed by the workspace. You change the content
of tabs and panels through the Ribbon tab; see Chapter 9

Toggle the Quad
The Quad Tabs node determines which quad groups and commands are displayed. When a Quad
tab (a.k.a. Quad group) name appears in this list, it is displayed by the workspace, unless the Dis-
play property = No. You change the content of quad groups through the Quad tab; see Chapter 12.

The On Switch node was disabled with BricsCAD V17, and acts now only as a placeholder.

On Switch acts like the appendix in the human body

FINE-TUNING UI ELEMENTS
Earlier you saw the properties that are available for workspaces. Some user interface elements
have additional properties that you can adjust, specifically menu items, toolbars, palettes, ribbon
tabs, and Quad tabs.

254    Customizing BricsCAD V20

Workspace Properties for Menus
When you choose the name of a menu, such as “File” ...

File menu selected in Workspaces tab

...then BricsCAD plays these properties:

Properties of a dropdown menu

Here is the meaning of the properties:

Property		 Meaning								

Menu Group		 Name of the menu group

ID			 Identifies the element in the CUIX file; “mn” prefix marks this element as a menu.

Display			 Determines if the menu is displayed by the menu bar:
			  •  Yes
			  •  No

Title			 Name of the menu displayed on the menu bar; the & indicates the underlined letter
			 for Alt-key shortcut access. To access menus with a keyboard, hold down the Alt key:
			 notice the underlined characters on the menu bar, and then press the underlined
			 letter to access the menu, such as f for File menu, as illustrated below.

Diesel			 Executes Diesel code when the user selects the men

Properties of Toolbars
When you choose the name of a toolbar, such as “Standard,” BricsCAD displays these properties:

Properties of a toolbar

	   14  Customizing Multiple UIs with Workspaces    255

Property		 Meaning								

Menu Group		 Name of the menu group

ID			 Identifies the element in the CUIX file; “tb” prefix marks this element as a toolbar
Display			 Determines if the toolbar is displayed when the workspace is opened:
			  •  Yes
			  •  No

Position		 Determines the toolbar’s initial location:
			  •  Floating — toolbar is located using the X and Y properties
			  •  Top — toolbar is attached to the top of the drawing area
			  •  Left— toolbar is attached at the left of the drawing area
			  •  Bottom— toolbar is attached to the bottom of the drawing area
			  •  Right— toolbar is attached at the right of the drawing area

Row			 Specifies the number of toolbar rows

Column			 Specifies the number of toolbar columns

X			 Locates the top of floating toolbars; the horizontal measurement is in pixels from
			 the top of the computer screen. Floating toolbars can float outside of the BricsCAD window

Y			 Locates left edge of toolbar, measured in pixels fromthe left edge of the computer’s screen

Title			 Name of the toolbar displayed on the title bar of floating toolbars

Properties of Panels
When you choose the name of a panel such as “Command Line,” BricsCAD plays the properties listed
below. The same properties are available to every panel. Palettes and bars are renamed “panels,” but
the words ‘palette’ and ‘bar’ still appear sometimes in the BricsCAD program and documentation.

TIP  When panels are CDOCK’ed (center docked), they overlap. Because the topmost panel hides the oth-
ers, BricsCAD automatically display tabs so that the user can switch between them.

			
The Stack Z Order parameter determines the order in which the tabs appear.

Properties of a panel, the Materials Browser panel in this case

256    Customizing BricsCAD V20

Property		 Meaning								

ID			 Identifies the name of the element in the CUIX file; cannot be edited by users

Title			 Name of the panel displayed in the Customize dialog box; a changed title has no
			 effect on the name displayed by the panel’s title bar.

Changing the panel Title from “Command Line” to “My Command Input Area”

Display			 Determines if the panel is displayed by the workspace:
			  •  Show — shows the panel when users switches to workspace
			  •  Hide — does not show the panel when users switches to workspace
			  •  Don’t Change — show if visible in previous workspace; keep hidden, if not

State			 Determines default location of the panel when user switches to this workspace:
			  •  Floating — floats anywhere at coordinates defined by Float parameters
			  •  Dock Top — docks to top of drawing area as defined by Dock parameters
			  •  Dock Left — docks to left of drawing area
			  •  Dock Bottom — docks to bottom of drawing area
			  •  Dock Right — docks to right of drawing area
			  •  Don’t Change — show if visible in previous workspace; keep hidden, if not

Stack ID		 Locates the panel when stacked:
			  •  LDOCK — docked to the left of the stack
			  •  RDOCK — docked to the right of the stack
			  •  TDOCK — docked at the top of the stack
			  •  BDOCK — docked at the bottom of the stack
			  •  CDOCK — docked on center of the stack, overlapping other panels

Stack Z Order		 Determines which panel is on top of other panels when center stacked (CDOCK):
			  •  0 — Highest priority (panel appears on top of other, higher-numbered panels)

Dock Column		 Position of the panel (relative to other panels) when docked to the left or right

Dock Row		 Position of the panel (relative to other panels) when docked to the top of bottom

Dock Width		 Width of the panel when docked at left or right; measured in pixels.

Dock Height		 Height of the panel when docked at top or bottom; measured in pixels

Float Left		 Left edge’s starting location of a floating panel; 0 = left edge of the main monitor

Float Top		 Top edge’s starting location of a floating panel; 0 = top edge of the main monitor
Float Width		 Width of the panel when floating; measured in pixels

Float Height		 Height of the floating panel; measured in pixels

Transparency	 Determines the level of translucency of the panel:
		 •  0 Fully opaque (default)
		 •  90 Maximum translucency (nearly transparent)

TIPS  When you assign the same Stack Z Order number to two or more panels, BricsCAD changes one of
the duplicated numbers automatically. For instance, assign Stack Z Order = 2 to Layers and Rendering, and
one of them will be changed to 3.

The Float Left and Top parameters apply to the position of the panels when using a multi-monitor setup.

	   14  Customizing Multiple UIs with Workspaces    257

When you move a panel to the left edge of the drawing area, BricsCAD previews the five possible
dock locations, as illustrated below: left, right, top, bottom, or center.

Panel preview

Proprieties of Ribbon Tabs
When you choose the name of a ribbon tab, such as “Home, ” BricsCAD displays these properties
for the tab:

Properties of a ribbon tab

Property		 Meaning								

Menu Group		 Name of the menu group.

ID			 Identifies element in the CUIX file; “rt” prefix marks this element as a ribbon tab

Label			 Identifies the element in the Customize dialog box

Title			 Names the tab as displayed on the ribbon

Key Tip			 Specifies letter to use for Alt-key shortcut access; not implemented.

TIP	 If key tips were implemented, it would work like this: hold down the Alt key; notice the charac-
ters in the tooltips, then press the letter on the keyboard to access the tab, such as h for Home tab.

Quad Reactors were removed from BricsCAD V18, as were the properties of Quad Tabs (Groups)
from the Customize dialog box.

258    Customizing BricsCAD V20

Properties of Quad Items
The only aspect of Quad items that can be customized is whether they appear in the current work-
space. When you choose the name of a Quad item (under a Quad Tab name), BricsCAD displays
these properties:

Properties of a Quad item

Property		 Meaning								

Title			 Name of the group displayed by the Quad; read-only

Label			 Name of the Quad tab; read-only

Title			 Named displayed by the Quad tab; read-only

Display			 Determines if the tab is displayed by the quad in this workspace:
			  •  Yes
			  •  No

The job of creating Quad groups was moved from this tab to the new Quad tab in BricsCAD V18;
see Chapter 12.

TIP  When items are shown in gray and are turned off, such as BIM Libraries in the figure below, it means
that an extra license needs to be purchased, or that the panel has not yet been implemented, such as
Visual Styles.

			

Other Customizations
in BricsCAD

PART III

260    Customizing BricsCAD V20

Notes

	 15  Designing Tool & Structure Panels    261

Designing Tool &
Structure Panels

CHAPTER SUMMARY

This chapter covers the following topics:

•	 Customizing icons and commands in Tool Palettes panel

•	 Importing palette files from AutoCAD

•	 Organizing palettes through groups

•	 Customizing the content of Structure panels

The purpose of the Tool Palettes panel is to provide access to collections of commands and
drawing elements you use often, such as specific hatch patterns. Instead of rummaging through
a variety of commands and dialog boxes, you drag commonly-used items from this centralized
palette into the drawing.

The purpose of the Structure panel is top show you the structure of the drawing: which entities are
connected to which. You can customize the way it displays the structure.

In this chapter, you learn how to customize the Tool Palettes and Structure panels.

CHAPTER 15

262    Customizing BricsCAD V20

PANEL COMMANDS AND VARIABLES

RELATED COMMANDS

StructurePanel and StructurePanelClose — open and close the Structure panel displaying tree structure of the
drawing content

StructurePanel opens the Structure Tree Configuration File dialog box, prompting you to select a .cst (Configure Struc-
ture Tree) file; when you click Open, the Structure panel is opened and displays the configuration defined by the .cst file.

ToolPalettes and ToolPalettesClose — opens and closes the Tool Palettes panel

-ToolPanel — shows, hides, and toggles the visibility of specified panels through the command line

TpNavigate — loads tool palettes and groups through the command line

RELATED SYSTEM VARIABLES

ToolPalettePath — specifies the path to the folder holding .xtp files

TpState — reports whether the tool palettes panel is open (read-only)

StructureTreeConfig — specifies the CST file to use to configure the Structure panel

RELATED FILE TYPES

CST — files that configure structure trees

XTP — files that stored Tool Palette data, short for “xml tool palette”

	 15  Designing Tool & Structure Panels    263

About the Tool Palettes Panel

A most useful tool to CAD operators and managers is that the Tools Palettes panel. To show you
what the Tool Palettes panel looks like, the four default ones are illustrated below. From left to
right, we have one filled with 3D form features, the next with commands, and the last with hatch
and fill patterns.

   
Left to right: Palettes provided by default in BricsCAD

Here is how you work with the icons shown by each palette:

ÐÐ Form Features tab — drag a feature onto a sheet metal part

ÐÐ Command Tools tab — click an icon to run the associated command, such as the Line command

ÐÐ Hatches tab — drag one of the hatch or fill pattern icons into a closed object in the drawing

The Tool Palette panel is displayed by pressing Ctrl+3 (Cmd+3 on the Mac) or by entering the
ToolPalettes command. It shows the same group of palettes in every drawing that is opened. In-
deed, BricsCAD has the ability to provide one set standardized of Tool Palettes for an entire office.

ToolPalettes does not, unfortunately, support blocks. Instead, use the Components panel with the
ComponentsPanelOpen command.

(Form features are sheet metal features that mimic applying a forming tool to the sheet metal, such
as bridges, louver, and embosses. They inserted from built-in or user-defined libraries; BricsCAD
recognizes form features in imported geometry. Form features are listed in the Mechanical Browser
pane with their parameters; they can be edited directly or parametrically through Properties panel.
Each feature is represented by a .dwg file in the C:\Users\userid\AppData\Roaming\Bricsys\Bric-
sCAD\V20x64\en_US\Support\DesignLibrary\SheetMetal\FormFeatures folder.)

The user interface of the Tool Palettes panel is subtle, with numerous options “hidden” in shortcut
menus all over the palette. So, a large part of this chapter exposes these shortcut menus to you.

TIP  You can use the right-click menu to add components from files listed in the Folders tab of the Brics-
CAD Drawing Explorer to the current tool palette.

264    Customizing BricsCAD V20

QUICK SUMMARY OF VIEW OPTIONS

The View Options dialog box controls the size and style of icons. To access the dialog box, right-click the current tab in
the Tool Palettes, and then choose View Options from the shortcut menu.

Adjusting the look of palette icons

Image Size — slider changes the size of the icons, from smaller to larger

View Style — switches between showing icons with labels (text), or showing icons only, or or text-only

Apply to — applies the changes to the current tab or to all tabs

The figures below shows the effects of the Image Size and View Style options. Here is the smallest icon size, with text labels:

Small icons with labels

And here you see large icons with no labels. Removing labels squeezes in more icons, but may make it harder to know
the purpose of them.

Large icons with no labels

	 15  Designing Tool & Structure Panels    265

Navigating Tools Palettes

Different shortcut menus appear in the Tool Palettes panel, depending on which tab you right-click.
I recommend that first off you right-click the tab of the current palette, because it displays the larg-
est number of options, and so is the most useful:

Right-clicking the current (or top-most) tab

Clicking one of the other tabs gets you an abbreviated version. Here is the meaning of the options:

	 View Options displays a dialog box for setting the size and look of icons, along with descriptions; see the

figure below and the boxed text on the next page for the meaning of the functions

View options for all palettes

	 Paste pastes data from the Clipboard into the palette; available only when the Clipboard contains data ap-

propriate to the Tool Palette, such as a block definition

	 Update Palette updates the image of the icons, should a source (like a block definition) have changed

	 New Palette creates a new blank tab, and then prompts you to name it

	 Delete Palette warns against deleting the tab, and then removes it after you answer in the affirmative.

Deleting a tab

266    Customizing BricsCAD V20

	 Rename Palette renames the selected tab; see figure below:

Renaming a tab

ICON CUSTOMIZATION
When you right-click a tool’s icon, BricsCAD shows the following shortcut menu. Depending on
which icon you right-click, the shortcut menu may show fewer options:

Shortcut menu for individual tools

	 Cut and Copy — place the tool on the Clipboard (Cut also deletes it from the palette); you can then right-click

the palette and select Paste

	 Delete — removes the tool after you affirm the questioning dialog box:

Affirming the deletion of a tool

	 Rename — allows you to rename the tool, as shown below

Renaming a tool

	 Update tool image — refreshes the icon (applies to blocks and hatch patterns only)

	 Specify Image — opens the Select Image File dialog box, from which you select an image in BMP bitmap, GIF,

JPEG, PNG, or TIF format; large images are resized automatically to fit the icon area

	 Remove Image — returns the icon to its default, removing the image you applied with the Specify Image op-

tion; I suppose a better name for this option could be “Reset Image”

	 15  Designing Tool & Structure Panels    267

	 Properties — displays a dialog box for changing the item’s properties (see figure below); the content of the

dialog box varies according to the type of tool selected, and is discussed later in this chapter

Changing the properties (and functions) of a tool

Shown above are the properties of hatch patterns. To edit a property, click on it in the dialog box,
and then make the change.

PALETTE CUSTOMIZATION
The first step in customizing the Tool Palettes panel is to right-click on an unused area of the panel
— not on an icon or a tab — to get the following shortcut menu:

Right-click menu for controlling palettes

	 View Options — displays the same dialog box as does the tab’s shortcut menu

	 Paste — pastes a tool, if one has been copied or cut to the Clipboard

	 Update tool image — refreshes the icon (applies to blocks and hatch patterns only)

	 New Palette — adds a new blank palette

	 Delete Palette — removes a palette

	 Rename Palette — changes the name on the tab

268    Customizing BricsCAD V20

	 Customize Palettes — displays the Customize dialog box for creating palette groups (see figure below); the

dialog box is described later

Customize dialog box for creating palette groups

Add Tool — displays the Customize dialog box, as described in earlier in this book

Customizing Tools

The Tool Properties dialog box lets you customize the actions of commands and hatch patterns.
For instance, you can specify that clicking an icon (that looks like a cloud) draws revisions clouds
that are red in color, and placed on a specific layer or with a certain linetype.

To access this very important dialog box, right-click the icon you want to customize, and then choose
Properties. There are three versions of the dialog box — one each for form features (components),
hatches, and commands, as illustrated below:

   
Left to right: Tool properties for form features, patterns, and all other commands

Customizing Tools Properties
In this tutorial, you make a copy of an existing tool, and then customize it by changing its properties.
You modify the Line tool to draw lines with the “Hidden” linetype on layer “Hidden.”

	 15  Designing Tool & Structure Panels    269

Follow these steps to customize it:

1.	 Create a new layer named “Hidden.” Use the Layer command to do this in the Drawing Explorer dialog box.

Creating a new layer named “Hidden”

2.	 Load the “Hidden” linetype into the drawing. Use the Linetype > Load option for this.

Drawing Explorer listing available linetypes

3.	 Close the Drawing Explorer.

4.	 Open the Tool Palettes panel with the ToolPalettes command, and then choose the Command Tools tab.

5.	 Make a copy of the Line tool by copying it and then pasting it, like this:

a.	 Right-click the Line tool, and then choose Copy from the shortcut menu.

Copying the Line tool

270    Customizing BricsCAD V20

b.	 Right-click a blank area of the palette, and then choose Paste.

Pasting the tool as a new one

Notice that BricsCAD creates a second Line tool.

The second Line tool in place

6.	 With the copy made, you can now edit its properties. Right-click the new item, and then choose Properties.

Opening the properties of the new Line tool

	 15  Designing Tool & Structure Panels    271

7.	 In the Properties dialog box, change the following properties for this tutorial:

Properties	 Value						

	 Name		 Hidden Line
	 Description 	 Draws line with linetype Hidden on layer Hidden
	 Linetype 		 Hidden
	 Layer		 Hidden

Changing the properties

8.	 Click OK. Notice that BricsCAD changes the label of the icon.

Renamed icon

9.	 If you want to change the icon associated with the button, follow these steps:

a.	 Right-click the icon, and then from the shortcut menu, choose Specify Image.

Starting to assign an image to the button

272    Customizing BricsCAD V20

b.	 In the Select Image Position File dialog box, select an image file (in BMP, JPEG, PNG, GIF, or TIFF format),

and then click Open. Notice that the icon changes. BricsCAD automatically resizes the image to fit the

area of the icon.

Icon changes to the newly selected image

10.	 To test the tool that it actually works, click it and draw some line segments. If you do not see the hidden

linetype, change the value of the linetype scale with the LtScale command.

Drawing line segments with hidden linetype automatically applied

	 After drawing the lines, click them to see that they are being drawn on the Hidden layer.

“Hidden” layer automatically set

Adding Programs and Macros to Tools
You can make tools carry out simple programs (known as “macros”), but the process is less direct
than with just commands. It takes a workaround shown by these steps:

1.	 Place any geometric entity (tool) on a palette. It doesn’t matter what the entity is, because it is used only as a

placeholder.

2.	 Right-click the newly-added tool, and then select Properties.

3.	 In the Command String area, replace the command with a piece of programming code or a macro.

Editing the macro assigned to a button

TIP  You can either type the new code, or copy’n paste it from another source, such as from the earlier
chapters of this book that deal with writing macros.

4.	 Click OK and then test to macro to make sure it works.

	 15  Designing Tool & Structure Panels    273

Organizing Tools with Groups

BricsCAD allows you to create many palettes, but too many palettes can become unwieldy, and
so BricsCAD allows you to create groups of palettes. Groups let you show only those palettes you
need currently.

To create groups, right-click a blank area of the Tool Palettes panel, and then choose Customize
Palettes from the shortcut menu.

Accessing that other Customize dialog box

Notice that the Customize dialog box appears, and that it is different from the Customize dialog box
displayed by the Customize command! (There is no independent command to display this dialog box.)

Dialog box for creating palette groups

The commands and options for this dialog box are accessed solely by right-click menus. For instance,
to create a new palette, right-click in the Palettes area and then select New Palette, as shown above.

Rename — renames the palette

New Palette — creates a new palette named “New Palette,” which you then give a new name

Delete — erases the palette after you click OK to this dialog box:

Import — imports palette files in XTP and BTC formats; opens the Import Palette dialog box.

XTP is short for “XML Tool Palette,” the file format used by AutoCAD. BTC is short for “BrisCAD
Tool Collection.”

274    Customizing BricsCAD V20

CREATING PALETTE GROUPS
You can create as many palettes as you want; I am unsure if there is an upper theoretical limit. I
can see a design firm creating dozens of palettes, some for electrical engineers, some for landscape
designers, and so on. You can create grouping of palettes so that the electrical engineer doesn’t
have to see the palettes for landscaping. A group is a smaller set of palettes.

BricsCAD does not come with any palette groups, so you get to create your own through the oddly-
named Customize dialog box — oddly named, because this is not the dialog box of the same name
that is opened with the Customize command.

There is no command to access this dialog box; instead, you (as always) right-click a blank area of
a palette, and then choose Customize Palettes from the shortcut menu. Notice the other Custom-
ize dialog box:

Accessing that other Customize dialog box

(While this dialog box existed prior to V17, the groups function did not work.) As elsewhere with
Tool Palettes, all commands in this dialog box are executed through shortcut menu. When you
right-click the name of a group, the following menu appears:

Shortcut menu for palette groups

	 New Group — creates a new but empty palette group

	 Rename — renames the palette group

	 Delete — erases the group with no warning

	 Set Current — sets the selected group as the current one, meaning it will be displayed by the Tool Pal-

ette panel; when the group is empty, then this command is grayed out

	 Export — exports the current group to a XPG file, as described later

	 Export All —exports all groups in a single XPG file

	 Import — imports XTP and BTC files, as described later

To create a group of palettes, follow these steps:

	 15  Designing Tool & Structure Panels    275

1.	 In the Customize dialog box, right-click Palette Groups, and then from the shortcut menu choose New Group.

Creating a new group of palettes

2. 	 Notice that BricsCAD creates a new group name named “New Group.” For this tutorial, change then name to

Drawing Lines.

Naming the new group

3.	 Now drag palette names from the Palettes list over into the newly formed group. For this tutorial, drag over

“Hatches.”

Add palettes to a group

4.	 Right-click the group “Drawing Lines” and then from the dialog box choose Set Current.

5.	 When done, click Close. Notice that the Tool Palette panel now shows just one palette, Hatches.

Tool palettes with a custom group that shows just one palette

276    Customizing BricsCAD V20

IMPORTING TOOL PALETTES FROM AUTOCAD
BricsCAD reads files saved the XTP format; this is the format in which AutoCAD saves tool palettes.
“XTP” is an XML-based file format; the name is short for “xml tool palette.” To import them into
BricsCAD, follow these steps:

1. 	 In this Customize dialog box, right click and then choose Import from the shortcut menu.

Choosing the Import option

2.	 In the Import Palette dialog box, navigate to where you have XTP files.

3.	 Choose the file, and then click Open. Notice that BricsCAD adds the palette to its collection.

4. 	 Click Close to close the dialog box. Notice the new tab with its icons.

Tools lacking icons

BricsCAD does not have access to the icons used for tools, because AutoCAD stores them internally.
This is why question-mark icons are displayed.

Sharing Tool Palette Groups by Exporting Them
Once you customize a tool palette, you might want to share it with others. To do so, you export
groups. Groups are exported in XTG files (short for “XML tool group”).

Now, individual palettes cannot be exported (I am not sure why!), but you can do the same thing
by putting a single palette into a group, and then exporting it.

Here is how to do this:

1. 	 In this Customize dialog box, right click a group, and then choose Export from the shortcut menu.

2.	 In the Export Palette dialog box, navigate to where you stre XTG files.

3.	 Name the file, and then click Save.

	 15  Designing Tool & Structure Panels    277

Alternative Sharing Method
Another way to share palettes is to edit the Settings dialog box in BricsCAD to point to where BTC
and XTP files are stored, such as for AutoCAD.

1.	 Enter the Settings command.

2.	 In the search field, enter “palette.”

3.	 Open the Tool Palettes section, and then go to the Tool Palettes Path setting.

4.	 Click the Browse button.

Adding folders to BricsCAD’s folder searches

5.	 In the Folder List dialog box, click the Add Folder button.

6.	 Enter the path to the folder holding the XTP or BTC files. If necessary, click the Browse button and then use

the Choose a Folder dialog box to locate the folder.

7. 	 Click OK sufficient times to back out of all the folders!

This dialog box can be used to point to other AutoCAD support folders, such as for hatch pattern
collections, linetype files, printer setups, and so on.

278    Customizing BricsCAD V20

Customizing the Structure Panel

The Structure panel displays a structured tree view of the drawing’s content. This includes the
names of entities, blocks, and nearly any other entity. You can customize the elements that are
listed and in which order.

When you select the name of an entity in the structure tree, the entity is highlighted in the drawing
— and vice versa. Notice that entities are identified by hexadecimal (base 16) numbers.

Structure panel showing the structure of a floor plan by entities

There are two commands to open the Structure panel:

ÐÐ StructurePanel opens the Structure panel; StucturePanelClose closes it. Alternatively, right-click a toolbar
or other UI element in BricsCAD, and then choose Structure from the shortcut menu.

ÐÐ +StructurePanel opens the Structure Tree Configuration File dialog box, prompting you to select a .cst (Con-
figure Structure Tree) file; when you click Open, the Structure panel is opened and displays the configuration
defined by the .cst file.

A limitation: The panel operates in model space only.

When the panel opens, right-click the name of the drawing to see the following shortcut menu:

Accessing options

Drawing Properties — displays the Drawing properties dialog box, the same as entering the DwgProps command

Export — exports the drawing as an XML file

Expand / Collapse All — expands and collapses all nodes

Configure — displays the Configure Structure Tree (more later)

	 15  Designing Tool & Structure Panels    279

Right-clicking any other item in the panel displays the following shortcut menu, with a few differ-
ent options:

Accessing another shortcut menu

Show — Show the entity in the drawing

Hide — Hides the entity from the drawing

Isolate — Hides all other entities in the drawing

Zoom — zooms into the selected entity(ies)

Structure Configurations
The data displayed by the panel can be customized. BricsCAD provides several pre-made configu-
rations suitable for various kinds of drawings. The C:\Users\<login>\AppData\Roaming\Bricsys\
BricsCAD\V20x64\en_US\Support folder holds these .cst files:
default.cst
bim.cst
mechanical.cst

To load another configuration, click the down arrow (upper-right corner of the panel), and then
choose one from the list or else navigate to another folder with the Select option.

Selecting a Structure panel configuration

Alternatively, enter the StructureTreeConfig variable, which prompts you at the command line
to specify the name of a .cst file:
: structuretreeconfig
New value for StructureTreeConfig, or . for none/< C:\Users\<login>\AppData\Roaming\Bricsys\Bric-
sCAD\V20x64\en_US\Support\default.cst>:

CUSTOMIZING THE STRUCTURE PANEL
The format of the panel is customized through the Configure Structure Tree dialog box. You can create
many configurations, depending on your needs. Customization of a configuration takes two steps:

Step 1 — Create a rule

Step 2 — Specify the properties of the rule

280    Customizing BricsCAD V20

STRUCTURE OF .cst FILES

The C:\Users\userid\AppData\Roaming\Bricsys\BricsCAD\V20x64\en_US\Support folder holds several .cst files. The bim.cst file
is shown below, organizing the building spatially, first by Building, then by Story, BIM type, and then composition. Sections
are grouped by type: Section, Plan, Elevation, and Detail.

{
 “created”: {
 “by”: “BricsCAD”,
 “on”: “2016-10-28 10:50:09”
 },
 “rules”: [
 {
 “name”: “Building Elements”,
 “group”: [
 “BIM/Building”,
 “BIM/Story”,
 “BIM/Type”,
 “BIM/Composition”
],
 “sort”: [
 “BIM/Name”
]
 },
 {
 “name”: “Sections”,
 “group”: [
 “BIM/Section Type”
],
 “sort”: [
 “Name”
]
 },
 {
 “name”: “Entities”,
 “group”: [
 “EntityType”
],
 “sort”: [
 “Name”,
 “EffectiveName”,
 “Handle”
]
 }
],
 “mode”: “showAll”,
 “some”: [],
 “options”: {
 “treeSelect”: “select”,
 “entitySelect”: true,
 “autoCollapse”: false,
 “displayMode”: “byType”
 }
}

	 15  Designing Tool & Structure Panels    281

To customize the data displayed by the panel, click the bar (the one with the word “default” in the
figure below).

Opening the Configure Structure Tree dialog box

This handy shortcut opens the Configure Structure Tree dialog box.

Dialog box for customizing the display of the Structure panel

The dialog box sports three tabs — Group/Sort, Show/Skip, and Options. Let’s take a look at what
they offer.

Group/Sort Tab
The Group/Sort tab determines how drawing data is displayed. Here you can add rules and property
filters, move items around, and remove them.

To add a rule:

1.	 Select an existing rule name.

2.	 Click the green + (Add) button. Notice that the rule is duplicated.

3. 	 Use the arrows to move the selected rule up and down the list.

4.	 Edit the content of the rule, as described later.

To rename a rule:

1.	 Select a rule name.

2.	 Click on the name a second time.

3.	 Give the rule a different name, and then press Enter.

To remove a rule:

1.	 Select a rule name.

2.	 Click the red x button; there is no warning.

282    Customizing BricsCAD V20

Examining Rules
The way that element information is displayed in the Structure panel is determined by rules. The
rules specify which entities are displayed, and the order in which their properties are listed. By
listing one property ahead of another one, the second property becomes a subset of the first. More
on this later.

Let’s take the example of the bim.cst configuration.

Left: Structure panel’s display controlled by; right: ...the bim.cst file

The names of the rules — such as Building Elements and Sections — are for use by humans only,
and describe the content of the rules. Think of them as sections. Click a gray > (angle bracket) to
open the section, displaying the elements of the rule.

Expanded rules

There are three elements in each rule:

Filter — determines which elements are displayed by the rule; in this rule, it’s the names of BIM Types.

Group — determines how the BIM Types are grouped together; in this case, BIM Buildings, Stories, etc.

Sort — specifies how the elements are sorted within each group; here, it’s by BIM Name.

Let’s look at another rule to assist with understanding how configurations work: information about
sections. The Sections rule arrives at this by specifying the following:

Rule		 Property			 Meaning					

Filter		 BIM Section type 		 List details, elevation, plan, and section names
Group		 BIM Section type		 Group together BIM section types
Sort		 Name			 Sort section types by name alphabetically

	 15  Designing Tool & Structure Panels    283

You can see why I used the word “elements” instead of “entities.”

BIM rules for displaying sections

TIPS  The Diff Type property is used during the 3dCompare command; it reports differences, if any, be-
tween the two drawings being compared.

When there is no configuration file loaded, the Structure panel displays drawing entities in alphabetical
order. The icon in front of each name identifies the entity type, such as polyline, circle, and text:

			

Constructing Rules
To construct a rule, you select properties from a long list that I will show you shortly.

For this tutorial, I created a blank configuration file. I did this by deleting all rules from an existing
.cst file, and then used the File | Save As command to save it (with the name cb.cst).

Saving a blank .cst file

284    Customizing BricsCAD V20

In this tutorial, we create a rule that causes the Structure panel to list only lines in the current
drawing, sorted by layer name, and then by length.

1.	 To start constructing a new set of configuration rules, click the green + icon. Notice that a generic rule is
added, named “Rule.”

A generic rule added

	 The generic rule has three (fixed) sections that define the rule: Filter, Group, and Sort. You cannot add or

delete these three sections. If the section is empty, then it does nothing.

2.	 Rename the rule as “Lines by Layer,” as follows:

a.	 Right-click “Rule,” and then choose Rename.

Renaming a rule

b.	 Change “Rule” to Lines by Layer, and then press Enter.

3.	 We want the Structure tree to display only lines, so right-click Group, and then choose Add Filter Property.

Adding properties to a rule

	 Notice the Select Property dialog box. It lists every property available in BricsCAD — a couple hundred of them.

Properties dialog box

	 15  Designing Tool & Structure Panels    285

The properties are grouped into these sections:

ÐÐ General — lists properties common to all entities; these should be known to you from the Properties panel

ÐÐ Entities — lists the names of all entities and their specific properties

ÐÐ Extensions — lists properties that are specific to add-ons to BricsCAD, such as the BIM module

4.	 For this tutorial, we want lines listed by layer name. Click the + next to Entities, and then work your way

down: Entities > Line > Line > General > Layer:

Properties

5.	 Close the Properties dialog box by clicking OK. Notice that “Layer” is added under Group.

Entities grouped by layer

6.	 Let’s see what this has done to the Stricture panel. Click OK to close the dialog box. Notice that the panel lists

the “Lines by Layer” rule.

New rule displayed in Structure panel

286    Customizing BricsCAD V20

7.	 Now let’s see what is listed under that rule. Click the > next to “Lines by Layer.”

Layer names in the drawing

	 So far it looks good. You see the list of all layer names in the drawing. (I don’t know the order in which they

are listed — perhaps in order they were created?) The number in parentheses next to each layer name is the

number of entities on that layer, such as (36) for A-ELEV-OTLN.

8.	 Click the > next to layer “A-ELEV-OTLN.” Oops! What’s this? The icon shows that those are polylines listed.

Polylines listed by layer

9.	 To restrict the list of entities to lines only, follow these steps:

a.	 Return to the Configure Structure Tree dialog box by clicking the “cb” bar.

b.	 Click the Show/Skip tab.

Restricting the entities listed by Structure

c.	 Choose the radio button next to Show Only Selected Entity Types.

	 15  Designing Tool & Structure Panels    287

d.	 Scroll down until you find Line, and then click the box next to it.

Choosing the Line entity

e.	 Click OK to dismiss the dialog box.

10.	 Now open the “Line by Layer” rule in the Structure panel. Notice that fewer layers are displayed, because

now only layers with lines are listed.

Only layers with lines listed

11.	 Open a layer name. Notice that just line entities are listed.

Lines on each layer

12.	 Add a subcategory, such as the length of each line. Follow these steps:

a.	 Return to the Configure Structure Tree dialog box by clicking the “cb” bar.

b.	 Right-click Group, and then choose Add Grouping Property from the shortcut menu.

288    Customizing BricsCAD V20

c.	 In the Select Properties dialog box, navigate to Entities > Line > Line > Geometry > Length.

 Adding Length to the group

d.	 Click OK. Notice that Length is added under Group.

Length added to the Group section

e.	 Click OK to close the dialog box. Open up the nodes to find that the layers and lengths of lines are listed,

such as layer “A-ANNO-NOTE” and then 3'0".

Lines listed by layer name, and then by length

13.	 As I mentioned earlier, the elements seem to be sorted in a random order. Let’s now sort them alphabetcally.

Follow these steps:

a.	 Return to the Configure Structure Tree dialog box by clicking the “cb” bar.

b.	 Right-click Sort, and then choose Add Sorting Property from the shortcut menu.

Adding a sorting property

	 15  Designing Tool & Structure Panels    289

c.	 Choose Entity Type, and then click OK twice to dismiss the dialog boxes.

d.	 Take a look at how the added rule affected the listing: notice that the layer names are now alphabetical.

Layer names listed alphabetically

14.	 As a final step in this tutorial, let’s switch the order of the Layer and Length rules, like this.

a.	 Return to the Configure Structure Tree dialog box by clicking the “cb” bar.

b.	 Select “Length,” and then click the up arrow button to move it above the “Layer” rule.

Changing the order of rules

c.	 Click OK to dismiss the dialog box.

d.	 Notice that lines are now listed by length, and then by layer name.

Lines listed by length and layer

Show/Skip Tab
The Show/Skip tab gives you options in how to display items. This lets you filter out entities you
are not interested seeing in the Structure panel, such as ordinary lines.

ÐÐ Show all entity types in the drawing (default)

ÐÐ Show only selected entities types chosen in the list below (those with the check mark)

290    Customizing BricsCAD V20

ÐÐ Skip selected entity types as chosen in the list below

Options found in the Show/Skip tab

Options Tab
The Options tab provides options that control what happens with the structure tree:

ÐÐ Ignore tree selection — nothing happens when you select an item in the Structure panel

ÐÐ Highlight entities when selected in tree — (default) when you select an item in the Structure panel, it gets
highlighted in the drawing

ÐÐ Select entities when selected in tree — when you select an item in the panel, it is also selected in the draw-
ing, following which you can immediately edit it

On entity selection, select in tree — when on, the entity you select in the drawing is highlighted
in the Structure panel

On entity deselection, collapse in tree — when on, the tree in the Structure panel collapses
when the entity is no longer selected in the drawing . This is useful, because the content in the
panel can get very long.

Specifying options

Add nested blocks — when on, includes blocks that are nested inside other blocks.

Explode external references in tree — when on, lists all elements in an xref separately; when
off, lists the xref as a single element.

Creating Simple &
Complex Linetypes

BricsCAD supports two styles of linetypes, simple and complex:

•	 Simple linetypes — consist of lines, gaps, and dots strung together in a variety of patterns.

•	 Complex linetypes — add text and shapes to simple linetypes.

Top: Simple linetype consisting of dashes, dots, and gaps.

Above: Complex linetype for hot water pipes.

The BricsCAD package includes many simple and complex linetypes, and you can create your own,
as described in this chapter.

CHAPTER SUMMARY

The following topics are covered in this chapter:

•	 Discovering commands and system variables that affect linetypes

•	 Understanding the special case of polylines

•	 Checking compatibility with AutoCAD

•	 Customizing linetypes

•	 Editing linetype definitions

•	 Testing new linetypes

•	 Creating linetypes with text editors

•	 Understanding the linetype format

•	 Creating complex linetypes

CHAPTER 16

292    Customizing BricsCAD V20

QUICK SUMMARY OF LINETYPE DEFINITIONS

Linetypes are stored in .lin files and loaded with the Linetype command. Each linetype definition consists of two lines
of text, a header that labels the linetype, followed by a line of data that describes the linetype format.

LINE 1: HEADER

Example: *Name,. _ . _ . _

* (asterisk) — indicates the start of the linetype definition.

Name — names the linetype.

, (comma) — separates the name from the description.

. __ . __ — illustrates the linetype pattern, to a maximum of 47 characters.

LINE 2: SIMPLE LINETYPE DATA

Example: A, .25,-.1,0,-.1

A — specifies the alignment flag to force the linetype to begin and end a line segment adjusted to the overall length
of the object.

.25 — specifies the length of the dash, when LtScale = 1.0.

-.1 — specifies the length of the space, using a negative value.

 0 (zero) 	— specifies a dot.

LINE 2: COMPLEX LINETYPE DATA

Complex linetypes provide additional parameters within square brackets, as shown in boldface below.

Example: A,1.0,-.25,[“HW”,STANDARD,S=.2,R=0.0,X=-0.1,Y=-0.1],-.40

“HW” — specifies the letters to be displayed by the linetype.	

STANDARD — specifies the text style. Optional; when missing, current style is used.

S=.2 — specifies the height of the text, or its scale factor, depending on the following:

•  When style’s height = 0, then S specifies the height (0.2 in this case).

•  When style’s height is not 0, then S multiplies the style’s height (0.2x).

R=0.0 — rotates the text relative to the direction of the linetype. Optional; when missing, angle = 0. Default is in
degrees; can use r and g to specify radians or grads.

A=0.0 — rotates text relative to the x-axis to ensure that the text is always oriented in the same direction. Optional.

X=-0.1, Y=-0.1— offsets the text in the x and y directions.

NOTES

Every data line must begin with a dash; every dash and dot must be separated with a space. To include comments in
the .lin file, prefix lines with a semi-colon (;).

16  Creating Simple & Complex Linetypes    293

About Simple and Complex Linetypes

Simple linetypes consist of lines, gaps, and dots ordered in a variety of patterns. This is the most
common type of linetype, and its components are shown by the figure below.

Dash Gap Dot

What dashes, gags, and dots look like

And here are some of the simple linetypes included with BricsCAD. Notice that they all consist of
the gaps, dashes, and/or dots in a variety of patterns:

Simple linetypes consisting of lines, gaps, and dots in a variety of patterns

Also included with BricsCAD are standardized linetypes defined by ISO, the International Organiza-
tion of Standards. Complex linetypes are like simple linetypes, but include text, such as ones that
indicate fence and gas lines, as illustrated below:

Complex linetypes adds characters to simple linetypes

As with colors, the convention is to assign linetypes to objects in drawings through layers — not with
the Linetype command! Using the Layer command, you assign different linetypes to various layers.

You can, however, apply linetypes to objects directly, like colors, through the Entity Properties
toolbar or Properties pane.

COMMANDS AFFECTING LINETYPES
Linetypes are not stored in drawings; instead, they have to be loaded from .lin files. It’s always been
a source of irritation to me that I gotta load the file into drawings before I can use any linetype.
There is one workaround, and just one: add all linetypes to all template drawings.

BricsCAD provides two commands loading linetypes into drawings, Linetype and -Linetype.

294    Customizing BricsCAD V20

Loading Linetypes
The Linetype command opens Drawing Explorer for loading, listing, renaming, and deleting linetypes.
(In older days, this command was known as ExpLTypes, short for “explore linetypes.”) As an alterna-
tive, you can access Drawing Explorer from the Tools menu: choose Drawing Explorer | Linetypes.

Drawing Explorer handles all aspects of loading and assigning linetypes

The other command is -Linetype, and it operates at the command prompt. It loads linetypes, lists
the names of those already loaded, and can define new ones. It is meant mainly for use with scripts
and LISP programs.

The two commands load linetypes from these .lin files:

ÐÐ default.lin — definitions for imperial linetypes

ÐÐ iso.lin — definitions for metric (ISO) linetypes

ÐÐ standard.shx — source for characters used by complex linetypes

BricsCAD stores linetypes in the following folders:

	 Window — C:\Users\<username>\AppData\Roaming\Bricsys\BricsCAD\V20\ en_US\support

	 Linux — /home/<login>/Bricsys/BricsCAD/V20x64/en_US/Support

	 Mac — /Users/<login>/Library/Preferences/Bricsys/BricsCAD/V20x64/en_US/Support

Scaling Linetypes
Like text, linetypes can be tricky to size. You have to scale the gaps and dashes in just the right way.
Too small a scale, and linetypes look solid — but takes a suspiciously long time to redraw. Too large,
and the linetype also looks solid. Here’s what the problem looks like:

LtScale = 0.01 (too small)

LtScale = 0.1 (just right)

LtScale = 1 (too big)

The effects of scale on linetypes

And to solve the problem, BricsCAD has the LtScale system variable, short for “linetype scale.” It
sets the scale of linetypes. Typically, the scale factor you use for text, dimensions, and hatch pat-
terns also applies to linetypes. Nice, eh?

16  Creating Simple & Complex Linetypes    295

SYSTEM VARIABLES AFFECTING LINETYPES
There are many system variables that control the look and size of linetypes. They happen to be
scattered all around the Settings dialog box, and so I provide this complete list of them. This first
set of variables determine the linetypes used for drawings:

	 MeasureInit — sets the initial unit of measurement for new drawings (metric or Imperial), and so determines

which .LIN files are used (ANSI or ISO)

	 Measurement — changes the units for the current drawing between metric and Imperial, and so determines

which ANSI or ISO.LIN files are used

	 SrchPath — specifies the path to LIN definition files

These are the system variables that relate to linetypes applied to entities in drawings:

	 CeLtype — holds the name of the linetype currently in effect; short for “current entity linetype”

	 CeLtScale — specifies the current linetype scale

	 LtScale — stores the current linetype scale factor; short for “linetype scale” (default = 1.0)

	 PLineGen — determines how linetype cross polyline vertices; short for “polyline generation”

	 VisRetain — determines whether changes made to xref layers, such as linetypes, are saved with the drawing

In addition to regular entities, linetypes can also be specified for parts of regular and dynamic
dimensions, and for visual styles:

	 DimLType — specifies the linetype for dimension lines

	 DimLtEx1 and DimLtEx2 — specifies the linetype for the first and second extension lines

	 DynDimLineType — specifies the linetype displayed by dynamic dimensions as they are being moved

	 ObscuredLType — specifies the linetype of obscured line; independent of zoom scale

A final set of variables specifies the linetype scale factor in outside of traditional model space:

	 MsLtScale — annotatively scales linetypes in model space

	 PsLtScale — scales linetypes in paper space; short for “paper space linetype scale”

The CeLType system variable reports the name of the current linetype. You can use it as a keyboard
shortcut to change the name of the current linetype, like this:
	 : celtype
	 New value for CELTYPE, or . for none/<"ByLayer">: continuous

The Special Case of Paper Space
Because linetypes are affected by scale, their scale becomes a problem in paper space. A linetype
scale that looks fine in model space will look wrong in paper space, because paper space almost
always has its own scale factor. By default, the scale of linetypes in paper space is 1.0 — no matter
what it may be in model space.

296    Customizing BricsCAD V20

The solution comes with the PsLtScale system variable. Its job is to scale all linetypes relative to
paper space. Say, for example, the paper space scale is 1/4" = 1' (that’s 1:48). By setting PsLtScale
to 48, BricsCAD automatically displays linetypes 48 times larger in paper space than in model space.

The Special Case of Polylines
Then there’s a trick to employ when it comes to polylines. To understand the problem, it helps to
know how BricsCAD generates linetypes. In an attempt to apply linetypes as nicely as it can, the
software generates the linetype based on (a) the length of the object and (b) the linetype scale factor.

Essentially, BricsCAD starts at one end of the object, and then works its way to the other end. The
program then centers the linetype pattern so that it looks nice and even at both ends. You’ll never
see the linetype pattern abruptly ending midway at one end of the object. Here is how a line looks
with a linetype applied centered:

Normal length of dashes

End dash made longer to
fit overall length of line

Start dash made longer to
fit overall length of line

Centering a linetype on a line segment

Consider, then, the polyline. While it looks like one long connected line-arc-spline, it contains many
vertices, even when you do not see them. Each vertex signals the start and end of a line or arc seg-
ment. BricsCAD faithfully restarts the linetype pattern each time it encounters a vertex.

When the vertices are close together, BricsCAD never gets around to restarting the pattern, resulting
in a polyline that looks solid, or continuous. This drives some people nuts, like cartographers who
use polylines for drawing contours. The solution is to use the PlineGen system variable. When
turned off (the default), BricsCAD works as before, generating the linetype from vertex to vertex.
When changed to on, BricsCAD generates the linetype from one end of the polyline to the other
end — ah, instant relief! (This problem does not affect splines.)

16  Creating Simple & Complex Linetypes    297

Customizing Linetypes

BricsCAD has two ways of creating custom linetypes: at the command prompt, or with a text editor.
Let’s look at the first one first.

AT THE COMMAND PROMPT
Follow these steps to create new linetypes at the command prompt through the ‑Linetype command:

1.	 Start BricsCAD, and then enter the -Linetype Create command:
	 : -linetype
	 Linetype: ? to list/Create/Load/Set: c

2.	 Give a name to the linetype, which can be as long as 31 characters.
	 Name for new linetype: dit-dah

	 Unlike creating a custom hatch pattern on-the-fly, BricsCAD actually stores the new linetype in a .lin file, al-

lowing you to reuse it later.

3.	 At this point, BricsCAD pops up the Create or Append Linetype dialog box.

Accessing linetype files

	 The dialog box lets you create a new linetype file or append the linetype definition in an existing, depending

on your next step:

•	 To create a new linetype file, enter the name of a new .lin file.

•	 To append to an existing file, select the name of a .lin file.

	 I find it easiest to keep all linetypes in one file, so I recommend accepting default.lin — or iso.lin if I tend to

work with ISO (international standard) linetypes.

4.	 After clicking the Save button to dismiss the dialog box, BricsCAD checks:
	 One moment... Checking existing linetypes for "dit-dah".

TIP  If two linetypes have the same name, BricsCAD would only read the first one it came across. If you
accidently (or otherwise) enter a linetype name that already exists — such as Dashed — BricsCAD warns:

		 DASHED already exists. Current definition is:
		 DASHED __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ 0.50,-0.250
		 Overwrite? <N>:

In this case, press enter and then try naming it again.

298    Customizing BricsCAD V20

5.	 Describe the linetype with any words you want up to 47 characters long.
	 Linetype description: . __ . __ . __ . __

	 A good descriptive text would be the pattern you plan to create, using dots, underlines, and spaces.

6.	 Finally! You get to define the linetype pattern.
	 Linetype definition (positive numbers for lines, negative for spaces):
	 A,

	 But, what’s this A? The letter A forces the linetype to align between two endpoints. That’s what causes the

linetypes start and stop with a dash, adjusted to fit. The A could also stand for “actually” because, actually, I

don’t have a choice when I create a linetype on-the-fly: BricsCAD forces the letter A on me.

	 Type the codes after the A, as follows:
	 A, .25,-.1,0,-.1

	 I could go on for a total of 78 characters but I won’t.

7. 	 I press Enter to end linetype definition, and I’m done.
	 Linetype "dit-dah" was defined in C:\Users\...\support\default.lin.
	 Linetype: ? to list/Create/Load/Set: (Press enter.)

	 Well, not quite done. I still need to test the pattern. By the way, new linetypes are added to the end of the

default.lin file.

Testing the New Linetype
It is important to always test a new customization creation. As simple as they are, linetypes are no
exception. Test the Dit-Dah pattern, as follows:

1.	 Use the Linetype Load command to load the pattern into drawing:
	 : -linetype
	 Linetype: ? to list/Create/Load/Set: L
	 Enter linetype to load: dit-dah

2.	 Up pops the Select Linetype File dialog box. Select default.lin, and then click Open. BricsCAD confirms:
	 Linetype DIT-DAH loaded.

3.	 Use the Set option to set the linetype, as follows:
	 ?/Create/Load/Set: s
	 New entity linetype (or ?) <BYLAYER>:

4.	 Here you can type either the name of a loaded linetype (such as “dit-dah”) or type ? to see which linetypes

are already loaded.

5.	 This time, get serious and set the current linetype to “dit-dah”:
	 ?/Create/Load/Set: s
	 New entity linetype (or ?) <BYLAYER>: dit-dah
	 ?/Create/Load/Set: (Press enter.)

6.	 Now, draw a line, and appreciate the linetype it is drawn with. Your debugging session is over.

16  Creating Simple & Complex Linetypes    299

CREATING LINETYPES WITH TEXT EDITORS
You can edit the default.lin linetype file directly to create custom linetypes. Here’s how:

1.	 Start a text editor (not a word processor), such as NotePad in Windows, Text Editor in Linux, or TextEdit in

MacOS.

2.	 Open the default.lin file. You find it in one of the following locations:

	 Windows — C:\Users\<login>\AppData\Roaming\Bricsys\BricsCAD\V20\ en_US\support

	 Linux — /home/<login>/Bricsys/BricsCAD/V20/en_US/Support

	 MacOS — /Users/<login>/Library/Preferences/Bricsys/BricsCAD/V20x64/en_US/Support

Adding linetype definitions with a text editor

3.	 When you scroll down to the end of the file, you see the Dit-Dah pattern you defined as per the earlier tuto-

rial.

4.	 You can modify an existing linetype, or add a new linetype. The process is exactly the same as when you did

it within BricsCAD, with two exceptions: (1) BricsCAD isn’t there to prompt you; and (2) you don’t need to use

the “A” prefix.

5.	 Save the .lin file with the same name (default.lin) or a new name, then test it within BricsCAD.

TIP	 If you can’t be bothered burrowing all the way down to the \C:\Users\<login>\AppData\Roaming \
Bricsys\BricsCAD\ V20\en_US\support\ folder, use the following trick:

	 1.  Start with the -Linetype command’s Create option.
	 2.  Enter a nonsense name when prompted for “Name for new linetype,” like ASDF.
	 3.  When you press Enter, the Create or Append Linetype File dialog box appears.
	 4.  Right-click default.lin and then choose Open With | Notepad.

Notepad opens with the default.lin file, ready for editing.

300    Customizing BricsCAD V20

Linetype Format (.lin)

The linetype definition consists of two lines of text:

LINE 1: HEADER
Line one is the header, such as *dit-dah,. _ . _ . _ where:

*	 	 Asterisk indicates the start of a new linetype definition. DIT-DAH Name of the linetype.

,	 	 Comma separates the name from the description.

. __ . __ Dot-space-spline pattern describes the linetype (to a maximum of 47 characters), which is

	 displayed by the Linetype ? command.

LINE 2: DATA
Line two is the data, such as A, .25,-.1,0,-.1 , where:

A 		 “A” is the alignment flag, which forces BricsCAD to start and end the linetype with a line segment

		 adjusted to the overall length of the object.

.25		 First number specifies the length of dashes when LtScale = 1.0. Every linetype data line must begin

		 with a dash.

-.1		 Numbers with negative signs specify the length of gaps when LtScale = 1.0; every linetype data line

		 must follow the initial dash with a gap.

0		 Zeros draw dots.

You can use a semicolon (;) to prefix any line as a comment line. Anything after the semicolon is
ignored by BricsCAD.

COMPLEX (2D) LINETYPES
“Complex” linetypes include text characters. Truth be told, that’s all they are: text — or, more ac-
curately, shapes. See Chapter 17 for full information on shapes.

Text

Text placed in linetypes

The complex linetype is a mixture of text and simple linetype codes — the dash, gap, and dot you
learned of earlier. The text are characters that can come from any .shx font file.

You could make complex patterns using ASCII art. For example, a square can be made from a pair of
square brackets to create the box effect: [and]. A zig-zag linetype can use the slash and backslash
characters, / and \.

16  Creating Simple & Complex Linetypes    301

Here, ASCII characters created smiley faces:

Symbols created from punctuation and other characters

The text used in complex linetypes come from .shx file. The shape file format is arcane, written to
be a highly efficient form of symbol for the slow running personal computers of the 1980s. Shapes
were quickly superseded by blocks, but remain on the scene due to their use in linetypes and so on.

If you want to write a custom shape definitions, see chapter 18. Be warned, however, that cod-
ing shapes requires a knowledge of trigonometry. Jason Bourhill recommends that you use the
MkShape (make shape) utility provided by Martin Drese from
https://www.bricsys.com/applications/a/?express-tools-a589-al1002.

The Express Tools collection also contains MkLType utility that makes linetypes, without need-
ing to code them.

EMBEDDING TEXT IN LINETYPES
The hot water linetype combines a dash and a gap with the letters HW using the Standard text style
(which uses the arial.ttf font file).

Here is the code for hot water:
*HOT_WATER, Hot Water ----HW----HW----HW----HW----HW----HW--
A,1.0,-.25,["HW",STANDARD,S=.2,R=0.0,X=-0.1,Y=-0.1],-.40

Much of this looks familiar, with the exception of the colored text between the square brackets,
shown in boldface. That is how text is embedded in linetypes, and here’s what it means:

Text
“HW” 	 Prints the letters between the dashes.

Text Style
STANDARD Applies this text style to the text. This is optional; when missing, BricsCAD uses the current text style,

whose name is stored in system variable TextStyle.

Text Scale
S=.2 	 S specifies the text size or scale factor. It can mean one of two things:

•	 When the height defined by the text style is 0 (as is often the case), then S defines the height; in this

case, the text is drawn 0.2 units tall).

•	 When the text style height is not 0, then this number multiplies the text style’s height; in this case, the

text is drawn at 0.2 times (or 20%) of the height defined in the text style.

302    Customizing BricsCAD V20

Text Rotation
R 	 Rotates the text relative to the direction of the line; R=0.0 means no rotation. The default measurement is

degrees; other forms of angular measurement are:

•	 r for radian, such as R=1.2r (there are 2pi radian in a circle).

•	 g for grad, such as R=150g (there are 400g in a circle).

	 The R parameter is optional and so can be left out. In this case, BricsCAD assumes zero degrees.

Absolute
A 	 Rotates the text relative to the x-axis (the “A” is short for absolute). This ensures the linetype text is drawn

so that it is always oriented in the same direction, no matter the angle of the line. Rotation is always per-

formed within the text baseline and capital height. That’s so the text isn’t rotated way off near the orbit of

Pluto.

	 The A parameter is optional and can be left out.

X and Y Offset
X 	 Shifts the text in the x-direction from the linetype definition vertex, which helps center the text in the line.

For example, X=-0.1 shifts it to the right by 0.1 units.

Y 	 Shifts the text in the y-direction from the linetype definition vertex. Y=-0.1 shifts text down by 0.1 units.

	 In both cases, the units are in the linetype scale factor, which is stored in system variable LtScale.

Text scale factor

X = 0.1

Y = 0.5

Parameters for positioning text in a linetype

Summing up, you can create a text-based linetype with a single parameter, such as [“HW”], or you
can exercise fine control over the font, size, rotation, and position with the six parameters listed
above. BricsCAD can work with any .shx font file you have on your computer.

Parameter	 Meaning			 Optional?		 Example		

""		 Text			 Required		 “HW”
filename	 Name of text style		 Default style	 STANDARD
S=		 Text size or scale factor	 Style height	 S=0.5
R=		 Rotation angle		 Angle = 0		 R=45
A=		 Absolute rotation angle	 Angle = 0		 A=0
X=		 Horizontal offset		 Offset = 0		 X=0.1
Y=		 Vertical offset		 Offset = 0		 Y=-0.1

BricsCAD does not recognize the U parameter, used by recent releases of AutoCAD to keep shapes
upright.

Patterning Hatches

Despite seemingly complex, hatch patterns consist of the same three basic elements as do
linetypes: dashes, gaps, and dots. The pattern repeats itself, which is done by specifying an offset
distance and an angle, as illustrated below:

Repeating pattern of lines

Angle

Offs
et

dis
tan

ce

CHAPTER SUMMARY

The following topics are covered in this chapter:

•	 Finding the source of hatch patterns

•	 Creating custom hatch patterns

•	 Understanding the default.pat file

CHAPTER 17

304    Customizing BricsCAD V20

QUICK SUMMARY OF PATTERN DEFINITIONS

Hatch patterns are stored in .pat files, and are applied with the Hatch command. Each hatch pattern definition consists
of at least two lines of text, a header that labels the pattern, followed by one or more lines of data that describe the
pattern. (Gradients are hard coded, and cannot be customized.)

LINE 1: HEADER

Example: *Name,Description

* (asterisk) — indicates the start of the hatch pattern

Name — names the pattern

, (comma) — separates the name from the description

Description — describes the pattern

LINE 2: HATCH PATTERN DATA

Example: 45, 0,0, 0,0.125

45 — specifies the angle of the line segment

0,0 — specifies x,y coordinates of the start of the line segment.

0,.125 — specifies ending coordinates of the line segment.

dash definition — defines dashes in the line segment using the same code is in linetypes:

	 •  Positive number draws a dash, such as 0.25

	 •  Zero (0) draws a dot

	 •  Negative number draws a gap, such as -0.25.

NOTE

To include comments in the .pat file, prefix lines with a semi-colon (;).

	 17  Patterning Hatches    305

The result is like the samples illustrated below.

Examples of hatching patterns provided with BricsCAD

BricsCAD cannot create hatch patterns made of circles and other nonlinear objects. BricsCAD also
can solid-fill and gradient-fill areas in any color.

BricsCAD comes with 87 hatch patterns, plus solid fill and nine gradient fill patterns. Even so, your
office drafting standard may well require additional patterns. In this chapter, we look at how to
create hatch patterns, and edit existing ones.

Where Do Hatch Patterns Come From?

The -Hatch command creates hatch patterns at the command line; Hatch displays a dialog box to
do the same thing. Unlike linetypes, the pattern file is loaded automatically the first time you use
the Hatch or -Hatch commands (formerly the BHatch command). Hatch patterns are defined in
files external to BricsCAD:

ÐÐ default.pat contains the hatch patterns you use most commonly

ÐÐ iso.pat contains hatch patterns as defined by the ISO

ÐÐ Other .pat files can also contain hatch patterns, but it is easier to keep all patterns in a single file

These are the folders in which BricsCAD stores its pattern files (replace <login> with your log in
name):

Windows: 	 C:\Users\<login>\AppData\Roaming\Bricsys\ BricsCAD\V20\en_US\support

Linux:		 /home/<login>/Bricsys/BricsCAD/V20/en_US/Support

MacOS: 		 /Users/<login>/Library/Preferences/Bricsys/BricsCAD/V20x64/en_US/Support

306    Customizing BricsCAD V20

HOW HATCH PATTERNS WORK
When you apply hatching to an area, BricsCAD generates a repeating pattern of parallel lines and
gaps based on the definition in the .pat file. The pattern comes to a stop when it reaches a bound-
ary; if BricsCAD cannot detect a boundary, it refuses to place the pattern.

Once the hatch is in place, you can use the Move command to move the hatch pattern elsewhere
in the drawing, if you so chose.

BricsCAD can create non-associative and associative hatch patterns; the Associative toggle is found
in the Options area of the Hatch and Gradient dialog box.

ÐÐ Non-associative means the area of the pattern is fixed. When you change the boundary, the pattern remains in
place, as illustrated below. This property is useful when you want the pattern to remain fixed.

ÐÐ Associative hatching means the pattern’s shape updates as you change the boundary.

Original hatch pattern
Associative hatching adjusts

to new boundary

Hatch pattern moved
(boundary remains in place)

Non-associative hatching
does not adjust to new

boundary

How associative hatching works

In either case, you can move the pattern independent of its boundary. This is because BricsCAD
treats both kinds of hatches as blocks. You can use the Explode command to explode blocks into
their constituent lines.

You can use the HatchEdit command or the Properties command to edit parameters of hatch,
solid, and gradient patterns.

	 17  Patterning Hatches    307

System Variables that Control Hatches
BricsCAD has system variables that control how hatches are created, and report their most recent
settings. In the Settings dialog box (Settings command), enter “hatches” in the search field:

Settings that affect hatches

Creating Custom Hatch Patterns

BricsCAD provides you with two ways to create custom hatch patterns: (a) simple patterns defined
with the Hatch and -Hatch commands; and (b) edit the default.pat file or write new .pat files with
a text editor. We look at both methods in this chapter. Unlike linetypes, you cannot create hatch
patterns in Drawing Explorer.

When you create simple hatch patterns with the Hatch command, BricsCAD does not, unfortunately,
save the fruit of your labor (unlike when you create a custom linetype with Linetype.) For this
reason, think of the first method of creating custom hatch patterns on-the-fly.

308    Customizing BricsCAD V20

-HATCH COMMAND
Your options for creating a hatch on-the-fly are limited to simple patterns. Using the ‑Hatch com-
mand, you access the Properties option, followed by User defined, as follows:

1.	 Enter the -Hatch command (formerly the Hatch command, with no hyphen prefix):
	 : -hatch
	 Current hatch pattern: ANSI31

2.	 Select the P (properties) option, and then the U (user defined) option:
	 Specify internal point or: Properties/Select/Remove islands/Advanced/Draw order/
	 Origin : p

	 Enter a pattern name or: ? to list patterns/Solid/User defined/<ANSI31> : u

3.	 Specify three parameters for custom hatch patterns: Angle, Spacing, and Crosshatching. 	 First, the angle:
	 Proceed/Angle for lines <0>: 45

4.	 Second, the spacing between parallel lines.
	 Space between standard pattern lines <1.0000>: 2

5. 	 Third, decide if you want the pattern crosshatched. That means the pattern is repeated at 90 degrees to the

first one.
	 Cross-hatch area? Yes/No/<No>: y

6.	 Finally, you select the object or boundary to hatch:
	 Specify internal point or [Properties/Select/Remove islands/Advanced/
	 Draw order/Origin]: (Pick a point in the drawing to apply the pattern.)

Doubled pattern

Angle = 45 degrees

Sp
ac

ing
 =

2 u
nit

s

Defining a custom hatch pattern inside BricsCAD

BricsCAD draws the pattern, but — as mentioned earlier — the custom hatch is not saved to a .pat file.

	 17  Patterning Hatches    309

HATCH COMMAND
Creating custom hatch patterns with the Hatch command is more like filling out a form:

1.	 From the Draw menu, select Hatch. (Alternatively, type Hatch at the command prompt). Notice the Hatch

and Gradient dialog box.

Hatch and Gradient dialog box

2.	 From the Type drop list, select Custom.

Location of parameters for user-defined hatch patterns in the dialog box

3.	 BricsCAD allows you to enter values for Angle, Spacing, and Cross Hatch, as well as color of the cross-hatcing

and the background color. Enter values such as these:
	 Angle		 45
	 Spacing		 2
	 Cross Hatch	 Yes

4.	 Click the Pick points in boundaries button, and then select the area you want hatched.

5.	 Press Enter to return to the dialog box, and then click OK. BricsCAD applies the custom pattern.

310    Customizing BricsCAD V20

Understanding the .pat Format

Let’s dig into the contents of the default.pat file to get a better understanding of how a pattern is
constructed.

1.	 Start a text editor (not a word processor), such as Notepad on Windows, Text Edit on Linux, or TextEdit on Mac.

2.	 In Windows, open the default.pat file from the \Users\<login>\AppData\Roaming\Bricsys\BricsCAD\V14x64\

en_US\support folder.

	 In Linux, open the default.pat file from the /home/<login>/Bricsys/BricsCAD/V20/en_US/Support folder.

	 In MacOS, open the default.pat file from the /Users/<login>/Library/Preferences/Bricsys/BricsCAD/V20x64/

en_US/Support/default.lin folder.

3.	 Scroll down a bit, and take a look at the seemingly-incomprehensible series of numbers and punctuation

contained by this file. I’ve reproduced the first dozen lines here:
	 ; Note: Dummy pattern description used for ‘Solid fill’.
	 *SOLID, Solid fill
	 45,0,0,0,0.1

	 *ANSI31,ANSI Iron
	 45, 0,0, 0,0.125

	 *ANSI32,ANSI Steel
	 45, 0,0, 0,0.375
	 45, .176776695,0, 0,.375

COMMENT AND HEADER LINES
The definition of a hatch pattern consists of two or more lines of text. The first line is called the
header, such as *SOLID, Solid fill.

Comment
The semicolon (;) indicates a comment line, such as
; Note: Dummy pattern description used for ‘Solid fill’.

That lets you include notes to yourself that are ignored by BricsCAD.

Start of Definition
The asterisk (*) is important, because it signals to BricsCAD the start of a new hatch pattern
definition.

Pattern Name
Following the asterisk comes the name for the hatch pattern, such as SOLID. The name must be
unique in the file. If it isn’t, BricsCAD uses the first pattern it finds by that name.

The comma following the name merely separates the name from the description. The comma is
optional; it doesn’t have to be there: a space works just as well.

	 17  Patterning Hatches    311

Description
The text following the pattern name is the description displayed by the -Hatch ? command, such
as “Solid fill.” This description is also optional, but highly recommended. You are limited to a maxi-
mum of 80 characters for the name, comma, and the description. If you need more room for the
description, use comment lines, such as:
; Note: Dummy pattern description used for ‘Solid fill’.
*SOLID, Solid fill

THE HATCH DATA
With the comment lines and the header line out of the way, let’s get down to the nitty-gritty hatch
pattern data and how it is coded. Lines 2 and following are the data, such as:
0, 0,0, 0,.275, .2,-.075 90, 0,0, 0,.275, .2,-.075

Every line of data uses the same format:
angle, xOrigin, yOrigin, xOffset, yOffset [, dash1, ...]

Angle
Angle is the angle at which this line of hatch pattern data is displayed. The “0” means the hatch line
is drawn horizontally; a “90” means the line is drawn vertically, and so on. A comma (,) separates
the numbers.

xOrigin and yOrigin
The xOrigin specifies that the first line of the hatch pattern passes through this x-coordinate. The
value of the yOrigin means that the first line of the hatch pattern passes through this y-coordinate.

xOffset and yOffset
The xOffset specifies the distance between line segments, aka the gap distance. You use this pa-
rameter only to specify the offset for vertical or diagonal lines (To specify the distance between
dashes, use the dash1 parameter.) In most hatch patterns, xOffset has a value of 0.0. Even though
this parameter is rarely used, it is not optional.

The yOffset is the vertical distance between repeating lines, and is used by every hatch pattern.

X origin
Y origin

Angle = 45 degrees

X spacing

Y spacing

Defining hatch patterns through spacing, angle, and origin

312    Customizing BricsCAD V20

Dash1,...
dash1 defines the dashes in the hatch pattern line (the code is the same as for linetypes):

ÐÐ A positive number, such as 0.25, is the length of the dash.

ÐÐ A 0 draws a dot.

ÐÐ A negative number, such as -0.25, draws a gap.

TIP  The dot drawn by the hatch pattern may create a problem when it comes time to plot. If you find
that the dots in a hatch pattern are not printed, use a very short line segment, such as 0.01, instead of a 0.

When you are finished editing a pattern, save the .pat file.

ADDING SAMPLES TO THE HATCH PALETTE
BricsCAD adds visual samples of your custom hatch patterns to the palette automatically. You can
have more than one .pat file; however, the additional ones are limited to one pattern definition
per file, and the definition’s name must match the file name.

TIPS ON CREATING PATTERN CODES
Some miscellaneous comments on hatch pattern coding:

Tip 1: Hatch pattern lines are drawn infinitely long. What this means is that BricsCAD draws the
line as long as necessary, as long as it reaches a boundary. BricsCAD will not draw the hatch pat-
tern unless it does find a boundary.

Tip 2: At the very least, each line of pattern code must include the angle, x- and y-origin, and
the x- and y-offset. This draws a continuous line.

Tip 3: The dash1 parameter(s) is optional but when used draws a line with the dash-gap-dot
pattern.

Tip 4: It’s a lot easier for someone else (or you, six months from now) to read your hatch pattern
code if you use tabs and spaces to format the code into nice columns.

Tip 5: To change the angle of a hatch pattern upon placing it in the drawing, you’ve got a couple
of options:

•  	 Specify the angle during the Hatch command.

•	 Set the angle in system variable SnapAng. The effect of SnapAng on the hatch pattern angle is additive: if

the hatch pattern defines the lines drawn at 45 degrees and SnapAng is 20 degrees, then BricsCAD draws

the hatch lines at 65 degrees. For example:
	 : snapang
	 New current angle for SNAPANG <0>: 20

The x-offset and y-offset parameters are unaffected by the angle parameter, because x-offset is
always in the direction of the line and y-offset is always perpendicular (90 degrees) to the line.

	 17  Patterning Hatches    313

If you are uncomfortable using system variables, then the Snap command provides the same op-
portunity via the Rotate option:
: snap
Snap is off (x and y = 0.5000): ON/Rotate/Style/Aspect/<Snap spacing>: r
Base point for snap grid <0.0000,0.0000>: 1,1
Rotation angle <0>: 45

Tip 6: You can specify a weight (or line width) for hatch patterns line. If you wish, you can also
make thick-looking patterns by using closely spaced lines, like this:
*Thick_Line, Closely spaced lines
0, 0,0, 0,.25 0, 0,.01, 0,.25 0, 0,.02, 0,.25

Tip 7: To draw dash and gap segments at an angle, use the sine of the angle in degrees, like this:

Angle		 Dash length (sine)		

0		 0
30		 0.433
45		 0.707
60		 0.866
90		 1.0

Tip 8: You cannot specify arcs, circles, and other round elements in a hatch pattern file. Everything
consists of straight lines and dots. To simulate circular elements, use a series of very short dashes.

314    Customizing BricsCAD V20

Notes

Decoding Shapes
& Fonts

BricsCAD uses .shx files for fonts, shapes, GD&T symbols, and complex linetypes. You can
create source .shp files, the subject of this chapter. BricsCAD, unfortunately, lacks the compiler
needed to convert .shp to the compiled .shx files that BricsCAD works with.

BricsCAD displays fonts from both TrueType (.ttf) and AutoCAD shape (.shx) files.

In addition to using .shx files for displaying fonts, BricsCAD use a second type of .shx file for simple
blocks-type entities known as “shapes,” and so includes the Load and Shape commands for load-
ing and placing them.

(Explanations updated by Jason Bourhill of CAD Concepts, www.cadconcepts.co.nz.)

CHAPTER SUMMARY

The following topics are covered in this chapter:

•	 Understanding shapes with fonts, complex linetypes, shapes, and GD&T symbols

•	 Learning about shape files

•	 Detailing the shape file format

CHAPTER 18

316    Customizing BricsCAD V20

QUICK SUMMARY OF SHAPE DEFINITIONS

Shapes and fonts are defined by .shp files, which need to be compiled into .shx files. A shape definition consists of at
least two lines of text, a header that labels the shape or font, followed by one or more lines of data that describe the
shape. The end of the data section is signified with a zero.

LINE 1: HEADER

*130,6,NAME

* (asterisk) — indicates the start of the shape definition.

130 — numbers the shape; fonts use the character’s ASCII number. Range is 1-255.

6 — specifies the total number of data bytes.

NAME — names the shape; must be in uppercase, and a maximum of 16 characters

LINE 2: DATA

014,002,01C,001,01C,0

Shape data consists of vector and instruction codes. Vector codes define movement and drawing in 16 directions:

	 0 — first digit (always 0) indicates the number is hexadecimal

	 1 — second character specifies the vector length, and ranges from 1 through F (15 units).

	 4 — third character specifies the direction of the vector

INSTRUCTION CODES

Hexadecimal	 Decimal 	Description 					

000		 0	 End of shape definition.
Basic Draw and Move
001 		 1	 Begin draw mode (pen down).
002 		 2	 End draw mode (pen up).
Scaling
003 		 3	 Divide vector lengths by next byte.
004 		 4	 Multiply vector lengths by next byte.
Memory
005 		 5	 Push current location onto stack.
006 		 6	 Pop current location from stack.
Draw Subshape
007 		 7	 Draw subshape number given by next byte.
Advanced Draw and Move
008 		 8	 X,y displacement given by next two bytes.
009 		 9	 Multiple x,y displacements; terminated with (0,0) code.
Arcs
00A 		 10	 Octant arc defined by next two bytes.
00B 		 11	 Fractional arc defined by next five bytes.
00C 		 12	 Arc defined by x,y displacement and bulge.
00D 		 13	 Multiple bulge-specified arcs.

	 18  Decoding Shapes & Fonts    317

Fonts, Complex Linetypes, and Shapes

BricsCAD uses shapes for fonts, the text in complex linetypes, and shapes.

SHX FONTS
In the early days of CAD, fonts were coded to be highly efficient. Computers didn’t have much
horsepower, and text was one of the slowest parts of the drawing display. To solve the problem of
vector fonts taking a long time to display on the slow computers of the 1980s, Autodesk invented
the SHX format: the simpler the font, the fewer the lines, the faster the display.

The simplest font of all, Txt.shx, looked ugly, but was able to draw most characters with just eight
lines. The drawback to SHX-based shapes, however, is that they are not well-suited to defining the
complex curves that truly represent fonts, nor can they be properly filled.

As computers became faster over time, the number of lines used to draw characters increased.
Eventually, Apple’s TrueType font technology allowed for truly smooth looking and fully filled fonts,
even in CAD drawings and on plots. The gallery below illustrates the development of the letter Q,
from the original Txt.shx to the more recent TimesRoman.ttf.

Q defined
by 9 lines

X origin
Y origin

Q defined
by 25 lines

Q defined
by doubled lines

Q defined
by serifs

Q defined
by triple lines

Q defined
by TrueType font

Txt.shx RomanS.shx RomanD.shx RomanC.shx RomanT.shx TimesRoman.ttf
Development of the letter Q from the 1980s to today

These are the file names of the SHX files included with BricsCAD:

SHX Font File		 Meaning						

complex.shx		 Serif font
hangul.shx		 Korean font
isocp.shx		 ISO standard font (European)
italic.shx		 Single-stroke italic font
italicc.shx		 Double-stroke italic font
italict.shx		 Triple-stroke italic font
japanese.shx		 Japanese font
monotxt.shx		 Mono-spaced font (every character takes up the same width)
romanc.shx		 Triple-stroke serif font
romand.shx		 Double-stroke serif font
romans.shx		 Single-stroke serif font
romant.shx		 Triple-stroke serif font (same as RomanC)
simplex.shx		 Non-serif font
trad_chin.shx		 Chinese font
txt.shx			 Minimal non-serif font

318    Customizing BricsCAD V20

About Fonts in BricsCAD
To be compatible with old drawings, BricsCAD supports the use of original .shx fonts as well as
today’s .ttf TrueType fonts. TTF files are included by default with the Windows and MacOS operat-
ing systems, and with some Linux systems. BricsCAD does not support PostScript fonts, such as
those provided as PFA and PFB files.

To load a font file into a drawing, use the Style command (a.k.a. Drawing Explorer), and then place
text with the Text, MText, and other text-related commands. BricsCAD accesses TrueType fonts
from each operating system’s default font folder:
Windows:	 C:\Windows\Fonts

Linux: 	 /usr/share/fonts/truetype

MacOS: 	 /Users/Library/FontCollections

If a drawing displays fonts incorrectly, then the problem lies with BricsCAD not finding the location
of the source font file. Here you have two solutions:

ÐÐ Use Settings | Files | Support file search path to add paths

ÐÐ Add the missing font files to the existing paths

TIP  To obtain a list of all fonts used by a drawing, run the eTransmit command.

USING SHX IN COMPLEX LINETYPES
Complex linetypes use shapes for the text portion. The position and size of the text is defined in
the default.lin and iso.lin linetype files, while the characters themselves are defined by the arial.ttf
font, by default. The font used is determined by the Standard text style; change the style, and the
linetype font changes.

Text from Txt.shp file

Linetype from Default.lin file

Complex linetype showing how is combines text with regular linetypes

They are loaded and placed with the Linetype command. For details, see the chapter on linetypes

SHX IN SHAPES
Shapes are an early form of block (symbol). Like fonts, they displayed very quickly on the slow
computers of the 1980s. Unfortunately, they were very hard to code; today it is so much easier to
use blocks, and so shapes are no longer used for symbols. Nowadays, shapes are used only by the
Tolerance command.

Shapes use a format of the SHX file that is nearly identical to that of fonts. Shapes must first be
loaded into the drawing with the Load command, and then placed in the drawing with the Shape
command.

	 18  Decoding Shapes & Fonts    319

SHX IN GD&T
GD&T (geometric dimensioning and tolerances) symbols are used for machining parts precisely.

Tolerance symbols

The symbols are placed by the Tolerance command, and are based on shapes from the gdt.shx file.

SHAPE COMPATIBILITY WITH AUTOCAD
For fonts, complex linetypes, shapes, and tolerances, BricsCAD can use any .shx file that AutoCAD
can use.

Both CAD packages use a .fmp file (short for “font map”) to substitute similar looking .shx fonts for
those found in each other’s drawings. At time of writing, BricsCAD specifies default.fmp but has
not implemented it.

About Shape Files

The shape file format is arcane, written to be a highly efficient form of symbol for the slow running
personal computers of the 1980s. Shapes were quickly superseded by blocks, but remain on the
scene due to their use in linetypes and so on.

Coding custom shape definitions requires a knowledge of trigonometry. Jason Bourhill recom-
mends that you use the MkShape (make shape) utility provided by Martin Drese from
https://www.bricsys.com/applications/a/?express-tools-a589-al1002.

There are two kinds of files used for shapes: .shp and .shx. The differences between them are as
follows:

ÐÐ .shp are shape source files. When you write or edit a shape or font, you work with the .shp file. A portion of a
typical .shp file looks like this:

	 *130,6,TRACK1
	 014,002,01C,001,01C,0

ÐÐ .shx are compiled shape files. These are the files that are loaded into BricsCAD for use with fonts, tolerances,
and so on.

320    Customizing BricsCAD V20

TIPS  You can use AutoCAD or the Compile utility from Bricsys to compile shape files you create using
information in this chapter. The Compile utility is part of the free BCadTools collection by Torsten Moses
from https://www.bricsys.com/applications/a/?bcadtools-freeware-a335-al528
	 You cannot edit .shx files, unless you have access to a shape decompiler program. Autodesk of-
fers the DumpShx.Exe utility in AutoCAD’s Express folder, or else search online for decompilers.

THE SHAPE FILE FORMAT
Autodesk defined two formats for the shape file: one for shapes (simple blocks), and one for fonts.
The difference between the two types is subtle: the font version of the file includes a code 0 to
alert the CAD system to treat the file as a font definition. When the 0 is missing, the file is treated
as a shape definition.

BricsCAD can load both forms of shape file, as shapes with the Load command, and as fonts with
the Style command. You cannot, unfortunately, distinguish between the two easily. One way is to
guess by the file or folder names. For instance, italic.shx is clearly a font file, while ltypeshap.shx is
probably a shape file. Other file names can be vague: symusic.shx seems like a shape file, but in fact
is a font file (musical symbols). BricsCAD does not warn you if you load the wrong kind of shape
file with the Load command; in contrast, the Style command lists only font-related SHX files.

Here are some aspects about the shape file format:

ÐÐ Shape files typically define one or more shapes, up to 258 in total.

ÐÐ Font files typically defines all the characters for a single font, such as A-Z, a-z, 0-9, and punctuation.

ÐÐ Unicode font files can have up to 32,768 definitions.

Like many other customization files, shape definitions consist of two or more lines. The first line is
the header, which labels the shape, while the second (and following) lines define the shape through
codes. The final code in each definition is 0, which is called the terminator.

The general format of a shape definition consists of a header line, followed by one or more defini-
tion lines:
*shapeNumber,totalBytes,shapeName
byte1,byte2,byte3,...,0

Each line can be up to 128 characters in length; shape files with longer lines will not be compiled.
Each definition is limited to a total of 2,000 bytes.

You can use blank lines to separate shape definitions and the semicolon (;) to include comments
in the file.

	 18  Decoding Shapes & Fonts    321

HEADER FIELDS
The following describes the fields of the shape’s header description:

Definition Start
*130,6,TRACK1

The asterisk signals AutoCAD that the next shape definition is starting.

shapeNumber
*130,6,TRACK1

Each shape requires a unique number by which it is identified. For fonts, the number is the equiva-
lent ASCII code, such as 65 for the letter A.

TIP  The shapeNumbers 256, 257, and 258 are reserved for the degree, plus-or-minus, and diameter sym-
bols.

totalBytes
*130,6,TRACK1

After defining the shape, you have to add up the number of bytes that describe the shape, includ-
ing the terminator, 0. Makes no sense to me. There is a limit of 2,000 bytes per shape definition.
Unicode shape numbers use two bytes each.

shapeName
*130,6,TRACK1

Shape names can be mixed case. Maximum length of the name is 16 characters; excess characters
are truncated.

DEFINITION LINES
The header line is followed by one or more lines that define the shape or font. This is the nitty-gritty
part of shape files, and you will now see why they are rarely used anymore.

bytes
014,002,01C,001,01C,0

The shape is defined by “bytes,” called that because each code is a single byte (the computer mea-
surement) in size. Bytes define vector lengths and directions, or instruction codes. They can be in
decimal (base 10) or hexadecimal (base 16) format. Definition lines are a maximum of 128 char-
acters long (including commas), and a maximum of 2,000 bytes overall (not including commas).
The last definition line ends with a 0.

TIP  When the first character of a byte is a 0, the two characters following are in hexadecimal, such as 00C
(12, in decimal).

322    Customizing BricsCAD V20

VECTOR CODES
Vector codes describe how the shape is drawn. They define movement (pen up) and drawing (pen
down). Vector codes are limited to 16 directions, increments of 22.5 degrees, as shown by the figure:

0

1

2

F

E

8

7

6

9

A

345

DCB
Vectors defining direction and distance

Notice that the lengths are not radial. Diagonal vectors such as 2 and E are 1.414 times longer than
the orthogonal vectors, such as 4 and 0. (Recall that 1.414 is the square root of 2.)

Vector codes are always in hexadecimal notation, such as 02C:

•	 First character is always 0 to indicate that the number is in hexadecimal.

•	 Second character is the vector length, ranging from 1 through F (15 units).

•	 Third character is the direction, as noted by the figure above.

Thus, 02C would draw a line 2 units long in the -y direction (downward). By now, you can see that
you need to understand hexadecimal notation.

Hexadecimal Conversion
Autodesk used hexadecimal (base 16) notation, because it was more efficient for use by computers
in the days when CPUs were slow. Back then, programmers did a lot of work to minimize the load
on the computer. Here is a conversion table between decimal and hexadecimal numbers:

Decimal	 Hexadecimal	

0 ... 9		 0 ... 9		
10		 A
11		 B
12		 C
13		 D
14		 E
15		 F

	 18  Decoding Shapes & Fonts    323

INSTRUCTION CODES
In addition to describing direction and length, shapes use codes to provide instructions. Code
numbers can be in decimal (dec) or hexadecimal (hex). Hex codes always have three digits, the first
being a 0 (zero). Notice that some codes rely on additional codes following. And, note that shapes
are limited to lines, arcs, and spaces.

Hex	 Dec 	 Description 					

000	 0	 End of shape definition.

Basic Draw and Move
001 	 1	 Begin draw mode (pen down).
002 	 2	 End draw mode (pen up).

Scaling
003 	 3	 Divide vector lengths by next byte.
004 	 4	 Multiply vector lengths by next byte.

Memory
005 	 5	 Push current location onto stack.
006 	 6	 Pop current location from stack.

Draw Subshape
007 	 7	 Draw subshape number given by next byte.

Advanced Draw and Move
008 	 8	 X,y displacement given by next two bytes.
009 	 9	 Multiple x,y displacements; terminated with (0,0) code.

Arcs
00A 	 10	 Octant arc defined by next two bytes.
00B 	 11	 Fractional arc defined by next five bytes.
00C 	 12	 Arc defined by x,y displacement and bulge.
00D 	 13	 Multiple bulge-specified arcs.

Fonts Only
00E 	 14	 Process next command only if vertical text code exists.

A stack is a specific type of memory called FILO, short for “first in, last out.” When two numbers are
stored in the stack memory, the last number stored is the first one out. Think of an elevator, where
the first person in is usually the last one out.

End of Shape - 0/000
Code 0 must mark the end of every shape definition. It appears at the end of the last line.
00C,(2,0,-127),0

In hex notation, 0 appears as 000.

Draw Mode - 1/001
Code 1 starts drawing mode (“pen” is down). By default, every shape definition starts with draw
mode turned on.

324    Customizing BricsCAD V20

2/002: Move Mode -
Code 2 starts move mode (“pen” is up). In the sample below, the pen is raised before moving to a
new location.
2,8,(-36,-63),1,0

Reduced Scale - 3/003
Code 3 specifies the relative size of each vector. Each shape starts off at the height of one of the
orthogonal vectors, such as 4. To make the shape smaller, use code 3 followed by a byte specify-
ing the scale factor, 1 through 255. For example, the following code draws the shape half as large:
3,2

TIP  Within a shape definition, the scale factor is cumulative. Using the same scale code twice multiplies
the effect. For example, 3,2 followed by another 3,2 makes part of the shape four times smaller.
	 At the end of the shape definition, return the scale to unity so that other shapes are not af-
fected.

Enlarged Scale - 4/004
To make the shape larger, use code 4 followed by a byte specifying the scale factor, 1 through 255.
For example, the following code draws the shape twice as large:
4,2

Note that you can use the 3 and 4 codes within a shape definition to make parts of the shape larger
and smaller.

Save (Push) - 5/005
Code 5 saves (pushes) the current x,y-coordinates to the stack memory. You then use code 6 to recall
(pop) the coordinates for later use. The stack memory is limited to four coordinates. By the end
of the shape definition, you must recall all coordinates that you saved; i.e., there must be an equal
number of code 5s and 6s, as shown below:
2,14,8,(-8,-25),14,5,8,(6,24),1,01A,016,012,01E,02C,02B,01A,2,
8,(8,5),1,01A,016,012,01E,02C,02B,01A,2,8,(4,-19),14,6,
14,8,(8,-9),0

Recall (Pop) - 6/006
Code 6 recalls (pops) the most-recently saved coordinates from the stack memory.

Subshape - 7/007
Code 7 calls a subshape, which is simply another shape. Shapes can be used within other shapes, which
helps reduce the tedium of coding shapes. Code 7 is followed by reference to another shape number,
between 1 to 255. (Recall that all shapes within a .shp file are identified by number.) For example:
7,2

calls shape 2 as a subshape.

	 18  Decoding Shapes & Fonts    325

X,y Distance - 8/008
Codes 8 and 9 overcome the restriction that the vector codes (just 16 directions) place on drawing.
Code 8 defines a distance using two bytes that range from -128 to 127:
8,xDistance,yDistance

The example below shows code 8 being used often:
2,14,3,2,14,8,(-21,-50),14,4,2,14,5,8,(11,25),1,8,(-7,-32),2,
8,(13,32),1,8,(-7,-32),2,8,(-6,19),1,0E0,2,8,(-15,-6),1,0E0,2,
8,(4,-6),14,6,14,3,2,14,8,(21,-32),14,4,2,0

In the first line of code above, 8,(-21,-50) draws 21 units left (-x), and 50 units down (-y).

X,y Distances - 9/009
Whereas code 8 specifies a single coordinate, code 9 specifies a series of coordinates, terminated
by (0,0). For example:
9,(1,2),(-3,4),(5,-6),(0,0)

Octant Arc - 10/00A
Code 10 defines an octant arc, which is an arc whose angle is limited to multiples of 45 degrees, as
shown in the following figure. The arc always starts at position 0, and then moves counterclockwise.

0

1

7

4

3

5

2

6
Defining the length of an arc through octants

The arc is specified by the following bytes:
10,radius,- 0 startingOctant octantSpan

ÐÐ 10 specifies an octant arc.

ÐÐ radius is a value between 1 and 255.

ÐÐ Negative sign changes the direction of the arc to clockwise; leave it out for counterclockwise direction.

ÐÐ 0 specifies the following characters are hexadecimal.

ÐÐ startingOctant specifies where the arc starts; the value ranges between 0 and 7).

ÐÐ octantSpan specifies how hard the arc travels, again a number between 0 through 7.

326    Customizing BricsCAD V20

TIPS	 When octantSpan is 0, the shape draws a circle.

The octant arc code usually uses parentheses to make itself clearer, such as:
	 10,(25,-040)

Fractional Arc - 11/ 00B
Code 11 is more useful because it draws arcs that don’t end and start at octant angles. Its specifica-
tion requires, however, five bytes:
11,startOffset,endOffset,highRadius,radius,- 0 startingOctant octantSpan

ÐÐ 11 defines the fractional arc.

ÐÐ startOffset specifies how far (in degrees) from the octant angle the arc begins.

ÐÐ endOffset specifies how far from an octant angle the arc ends.

ÐÐ highRadius specifies a radius larger than 255 units; when the arc has a radius of 255 units or smaller, then this
parameter is 0. The highRadius is multiplied by 256, then added to the radius value to find the radius of the arc.

ÐÐ radius is a value between 1 and 255.

ÐÐ Negative sign changes the direction of the arc to clockwise; leave it out for counterclockwise direction.

ÐÐ 0 specifies the following characters are hexadecimal.

ÐÐ startingOctant specifies where the arc starts; the value ranges between 0 and 7.

ÐÐ octantSpan specifies how far the arc travels, again a number between 0 through 7.

TIP	 Here is how Autodesk suggests determining the value of startOffset and endOffset:
1.  Determine the offsets by calculating the difference in degrees between the starting octant’s boundary
(which is
 always a multiple of 45 degrees) and the start of the arc.
2.  Multiply the difference by 256.
3.  Divide the result by 45.

Bulge Arc - 12/00C
Code 12 draws a single-segment arc by applying a bulge factor to the displacement vector.
0C,xDisplacement,yDisplacement,bulge

ÐÐ xDisplacement and yDisplacement specify the starting x,y-coordinates of the arc.

ÐÐ bulge specifies the curvature of the arc. All three values range from -127 to 127.

This is how Autodesk says the bulge is calculated: “If the line segment specified by the displacement
has length D, and the perpendicular distance from the midpoint of that segment has height H, the
magnitude of the bulge is ((2 * H / D) * 127).”

Displacement

Height

Calculating the size of a bulge

	 18  Decoding Shapes & Fonts    327

A semicircle (180 degrees) would have a bulge value of 127 (drawn counterclockwise) or -127
(drawn clockwise), while a line has a value of 0. For an arc of greater than 180 degrees, use two
arcs in a row.

Polyarc - 13/00D
Code 13 draws a polyarc, an arc with two or more parts. It is terminated by (0,0).
13,(0,2,127),(0,2,-127),(0,0)

TIP  To draw a straight line between two arcs, it is more efficient to use a zero-bulge arc, than to switch
between arcs and lines.

Flag Vertical Text Flag - 14/00E
Code 14 is for fonts only, and only fonts that are designed to be placed horizontally and vertically.
When the orientation is vertical, the code following is processed; if horizontal, the code is skipped.

328    Customizing BricsCAD V20

Notes

Coding with Field Text

CHAPTER 19

Fields are a special form of text that update automatically. Fields look like text with a gray
background, and show values provided by BricsCAD or the operating system, such as the diameter
of a circle or the date and time. To show new values, the text can updated manually or automatically.

In this chapter, you learn how to place fields in mtext, regular text, and in attributes, as well as how
to customise the look of fields.

CHAPTER SUMMARY

The following topics are covered by this chapter:

•	 Placing field text with Field, MText, AttDef, and other commands

•	 Changing field text

•	 Exhaustive references of all field codes

330    Customizing BricsCAD V20

For instance, the circle illustrated below at left has its area, center point, and so on described by
regular text (white background) and by field text with the gray background. The gray background
is only displayed and not plotted, and can be turned off with the FieldDisplay variable.

When the size of the circle is reduced and the field text updated, new values show up for the ones
that changed — the area, circumference, and radius. See figure at right.

Left: Circle with field text in gray, and regular text.
Right: Changed circle with updated field text.

FIELD COMMANDS & VARIABLES

COMMANDS

Field — displays the Field dialog box for constructing field text; also accessed through text commands such as MText
and AttDef

UpdateField — forces an update of field values, should they have changed

VARIABLES

DbMod (read-only) — reports if the drawing has been modified by changes to fields

FieldDisplay — toggles the gray background to field text

FieldEval — specifies when fields should be updated; default = 31 (all turned on):

0	 Not updated automatically

1	 Updated when the drawing is opened

2	 Updated when the drawing is saved

4	 Updated when the drawing is plotted

8	 Updated when the eTransmit command is used

16	 Updated when the drawing is regeneration

NOTE

The FieldEval variable does not update the Date field; it is updated only by the UpdateField command.

	 19  Coding with Field Text    331

Placing Field Text

Field text is added to drawings through the Field, Text, MText, AttDef, and Table commands, and
can be placed in dimensions and leaders (as mtext). Let’s take a look at each one.

FIELD COMMAND
The Field command places field text in drawings in a manner similar to the Text command, placing
single lines of text. It operates identically in Linux, Mac, and Windows. For this tutorial, the draw-
ing’s creation date is inserted as a field.

1.	 Enter the Field command.
	 : field

	 Notice that BricsCAD displays the Field dialog box.

Field dialog box

2.	 Select a field that you want by selecting a group (such as Date & Time or Document), choosing a field name

from the group (like CreateDate or Author), and then applying formatting, if available.

	 For this tutorial, the task is to insert the creation date as a field: CreationDate is in the Date & Time group. Fol-

low these steps:

a.	 Under Field Names, open the Date & Time node by clicking the + button.

Fields available for Date & Time

b.	 Notice the fields that are available for specifying dates. Choose CreateDate.

332    Customizing BricsCAD V20

c.	 Notice that the empty part of the dialog box suddenly fills up with all kinds of options related to format-

ting dates and times.

Formatting options for the CreateDate field

	 You can format the date field by selecting a format from the Examples column, or else construct your

own format. For this tutorial, scroll down and then choose the one that looks like “Thursday, April 23,

2014.” (The exact date displayed will differ.)

Selecting a format for the date

	 Notice that the Date Format area shows the date’s format code: dddd, MMMM dd, yyyy. This is where

you can edit the formatting code, something that I describe later.

3.	 Click OK. In the command panel, notice that BricsCAD prompts you with a set of Text-like options. (Incor-

rectly, it shows “MTEXT”; it should say “TEXT.”)
	 MTEXT Current text style: "Standard" Text height: 2.5

4.	 Pick a point in the drawing to place the field text:
	 Specify start point or [Height/Justify]: (Enter an option, or else pick a point)

	 19  Coding with Field Text    333

	 BricsCAD places the field in the drawing with today’s date, using the current text style. (The date you see will

differ from the one shown below.)

Date generated by field code

	 If, however, the drawing is a new one and has not been saved, then all you’ll see are four dashes, like this:

Field code that lacks meaning

	 This is the way that BricsCAD tells you a field lacks a valid value. To give the drawing a creation date, use the

Save command.

TIP  When a field displays four hash marks, like #### , it means the field value is invalid for some reason.

FIELDS IN MTEXT
If you want to embed field text with regular text, then use the MText or AttDef commands; the Text
command and dimensioning commands can’t do this. Embedding lets you mix regular text and field
text in useful ways, such as the combination of “Date: ” with a dynamic date.

Combining text with field code

In this tutorial, you place a field that reports the file name of the drawing.

1.	 Start the MText command, and then answer its prompts:
	 : mtext
	 Multiline Text: First corner for block of text: (Pick a point)
	 Select Opposite corner for block of text or [Justification/Rotation angle/text Style/
	 text Height/Direction/Width]: (Pick another point)

2.	 Type some text, such as “Drawing Name:”.

3.	 To insert the field text, press Ctrl+F.

	 Alternatively, in the Text Formatting toolbar, click the Field button.

	 Or else right-click the Text Formatting toolbar, and then from the shortcut menu select Insert Field.

Accessing fields in the MText command

334    Customizing BricsCAD V20

4. 	 Notice that the Field dialog box opens. To choose the field for displaying the name of the drawing file, follow

these steps:

Choosing formatting options for the file name

a.	 In the Field Names list, open the Document node.

b.	 Under Document, choose Filename.

c.	 In the Format area, set these options:
			 Format 			 (none)

		 Path			 No
	 	 	 Filename 		 Yes

	 	 File extension 		 Yes

5.	 Click OK. Notice that BricsCAD adds the file name field. It may appear as “Drawing1,” or whatever the file

name of the your drawing is. You can tell that it is field text, because of the gray background.

Field text with filename

6.	 Exit the mtext editor by clicking OK.

7.	 To see field text in action, now save the drawing to change its name:

a.	 Enter the SaveAs command.

b.	 In the Save Drawing As dialog box, enter a file name like “Field text example.”

c.	 Click Save.

Notice that the field text changes to reflect the new file name.

Field text with filename and exetension

	 19  Coding with Field Text    335

FIELDS IN ATTRIBUTES
Field text can be made part of an attribute definition. Recall that attributes are used to add custom
data to blocks. As shown by the following tutorial, this is done with the AttDef command, which is
normally used to define attributes.

In this tutorial, you create an attribute that reports the current zoom level of the drawing.

1. 	 Start the AttDef command. Notice the Attribute Definition dialog box.

2.	 In the Attribute section, fill in the attribute text fields — Tag, Prompt, and Default fiels. YT; you can use the

figure below as an example of the text to use:

3.	 To add a field to the attribute, click the Insert Field button next to the Default field. Notice that BricsCAD

displays the usual Field dialog box, as shown below.

Field dialog box

4.	 Select a system variable like this:

a.	 From the Fields Name list, open the Variables node.

Choosing the SystemVariable field name

b.	 Select SystemVariable.

c.	 Under the list of System Variables, scroll right to the end and then pick ZoomFactor.

d.	 It has no format options, so click OK.

336    Customizing BricsCAD V20

5.	 Click OK to close the Field dialog box.

	 Back in the Attribute Definition dialog box, notice that the field text shows in the Default box with a gray

background.

Entering field code as an attribute definition

6.	 Click OK to close the dialog box. All you see in the drawing is ZOOMVALUE.

No field text yet!

7.	 To see the field text, you need to turn the attribute into a block and then insert the block. Follow these steps:

a.	 Start the Block command.

Placing a block as field text

b.	 Enter the following parameters:

		 Name	 	 zoomvalue

		 Base Point	 Click Pick Point, and then pick the lower right corner to ZOOMVALUE;

	 	 	 use the INSertion point entity snap to assist you

					

					 Using Insertion entity snap to locate the insertion point of the text

		 Entities	 	 Click Select Entities, and then choose the text

		 Convert to Block	 Yes

TIP  Users should not be allowed to modify fields, so turn on the Constant setting found in the Mode sec-
tion in the AttDef dialog box.

c.	 Click OK.

d.	 When the Edit Attributes dialog box appears, click Cancel; you don’t need its services.

	 19  Coding with Field Text    337

8.	 Zoom in and out. The zoom factor value does not change. To update the field takes two steps this time.

a.	 First, change the value of the zoom factor using the related varaiable:
	 : zoomfactor
	 New current value for ZOOMFACTOR (3 to 100) <60>: 5

b.	 The field text still does not change (I’ll explain later why this is), so enter the Regen command to see the

value of the field updated.
	 : regen

Field text visible after Regen command

Changing Field Text

To change field text, simply double-click it; BricsCAD displays the Field dialog box. Use it to make
changes. Alternatively, you can change field values by using the Properties palette. Here, we look
at both approaches.

DOUBLE-CLICKING FIELDS IN MTEXT
To edit fields placed by the MText command, you use this procedure.

1.	 Double-click the field text. Notice that BricsCAD displays the mtext editor.

2.	 Click the field text. Notice that its background color changes to blue.

Field text in mtext

3.	 Now double-click the blue, and notice that the Field dialog box appears. (Alternatively, you can right-click

field text to access the following shortcut menu.)

Accessing field text editor

Here’s what the the three field-related options mean on the shortcut menu:

	 Edit Field — displays the Field dialog box.

	 Update Field — forces an update the field’s value.

	 Convert Field to Text — turns the field into normal text, freezing the value of the field.

4.	 Select a different field type, or change the field formatting.

5.	 Click OK to close the dialog box, and then click OK to exit the mtext editor.

338    Customizing BricsCAD V20

So the background to field text changes color, depending on its editing state:

	 	 Gray = field text in unedited state

	 	 Blue = field text ready for editing

EDITING FIELDS IN ATTRIBUTE DEFINITIONS
When field text is in an attribute definition, you can edit it, as follows:

1.	 Double-click the attribute text. BricsCAD displays the Attribute Editor dialog box. (The EAttEdit command

was executed.)

Field text in attribute editor

2.	 In the dialog box’s Default field, double-click the gray field text. Alternatively, you can right-click the field text

itself to access this shortcut menu:

Accessing field text editor

3.	 Notice the Field dialog box. Make your changes, and then click OK to exit the dialog boxes.

	 19  Coding with Field Text    339

Controlling the Way Fields Update

The point to using field text is that it can update values — manually or automatically. You force an
update with the UpdateField command, or else specify when automatic updates take place with
the FieldEval system variable.

UPDATEFIELD COMMAND
To update selected fields manually, use the UpdateField command. It asks you to select one or
more fields, and then update their values.
: updatefield
Select field(s) to update: (Press Ctrl+A, or select individual fields)
Select field(s) to update: (Press Enter to end object selection)
<n field(s) found, n field(s) updated>

To update all fields in the drawing, press Ctrl+A at the ‘Select fields’ prompt.

FIELDEVAL COMMAND
Earlier, you used the Regen command to force the value of a field to update. This was an application
of an automatic update that was dictated by the FieldEval sysvar. It wasn’t the Regen command itself
that did the updating; rather the command triggered BricsCAD to also update all fields in the drawing.

Fields are updated by BricsCAD when any of the following trigger events occur:

Open — when the drawing file is opened

Save — after the drawing file is saved, as you saw above with the CreateDate field

Plot — before the drawing is plotted

eTransmit — as the drawing is being prepared for packaging with the eTransmit command

Regen — when the drawing is regenerated (reloaded from the .dwg file)

Note that the settings in FieldEval variable do not update Date fields; dates can be updated only
with the UpdateField command.

These events are controlled with the FieldEval system variable, which is best accessed through
the Settings dialog box:

Settings for field text

340    Customizing BricsCAD V20

If you choose the access the system variable at the command line, it looks like this:
: fieldeval
New current value for FIELDEVAL (0 to 31) <31>: (Enter a number)

The value takes one or more of these values:

FieldEval	 Comments								

0 		 Fields are not updated automatically; use the UpdateField command
1		 Open command
2 		 Save command
4 		 Plot  command
8 		 eTransmit command
16 		 Regen command

The default is 31, the sum of 1+2+4+8+16 — all options are turned on, except for 0.

FIELDDISPLAY COMMAND
The FieldDisplay system variable determines whether field text displays that gray rectangular
background or not:
: fielddisplay
New current value for FIELDDISPLAY [1 for on (ON)/0 for off (OF): (Enter OFf or On)

I say, leave it on all the time, because (a) its purpose is to lets you distinguish between field and
regular text, and (b) the gray background is never plotted, anyhow.

FieldDisplay	 Comments						

0 		 Fields don’t display the gray rectangular background

1 		 They do

Another Field Text Example

In the following tutorial, you get field text to report the area of a rectangle.

1.	 Start BricsCAD, and then use the Rectang command to draw a rectangle of any size.

A rectangle

2.	 Use the Field command to create the field code for the area of the rectangle. Select the following options:

Field Option	 Value								

	 Field Category	 Objects
	 Field Names	 Object
	 Object Type	 (Click Select Object button, and then select the rectangle.) Polyline
	 Property		 Area
	 Format		 Architectural
	 Precision		 0.00

	 19  Coding with Field Text    341

Field dialog box

TIP  The field text is linked automatically to the rectangle through the Select Object button.

3.	 Click OK to exit the dialog box.

4.	 BricsCAD switches to mtext-like prompts:
	 MTEXT Current style: “Standard” Text height: 2.5
	 Specify start point or [Height/Justify]: (Pick a point inside the rectangle)

Field text inside rectangle

The field text is placed in the drawing. Notice that the units are shown as “SQ. FT.” — square feet.

Updating the Field Text
With the field text reporting the area of the rectangle, you can go ahead and change the size of the
rectangle to see how the field updates.

1.	 Select the rectangle, and then use the grips to change the size of the rectangle.

Changing the rectangle...

342    Customizing BricsCAD V20

2.	 Enter the Regen command to update the field text.

... changes the field text

Notice that the field text changes to reflect the new area.

TIP  It is important to remember that field text is tied to specific objects. If you erase the rectangle and
then use the UpdateField command, the field text will read ######## because it no longer has a valid
meaning, because its related object is gone.

COMPATIBILITY WITH AUTOCAD FIELD CODES

In general, field codes generated by BricsCAD are compatible with those from AutoCAD. The primary difference is that
BricsCAD tends to have fewer entities and fewer codes for some entities. In addition, when you paste literal field codes
into a drawing, BricsCAD interprets them as a script; in AutoCAD, they are pasted as field text.

When you open a drawing from AutoCAD in BricsCAD containing unsupported field codes (such as for mlines),
BricsCAD displays them correctly as field text, but cannot edit them.

	 19  Coding with Field Text    343

Understanding Field Codes

Field text uses a coding system that is not documented by neither Autodesk nor Bricsys. A typical
field code looks like this:
%<\AcVar Filename \f “%tc4%fn7”>%

(Parts of the code that never change are shown in blue.) Generally there are two pairs in a code,
one set before the \f, and another after:

ÐÐ Before the \f is the type of field

ÐÐ After the \f is the format of the field

I figure that \f is short for “format.” In the drawing, the code listed above gives the file name in a
field, like Drawing1.dwg.

Let’s parse the field code to see what it means:
	 %<			 Start of field code
	   \AcVar 		 AutoCAD variable
	  Filename 		 Name of the variable

	   \f "			 Start of format code(s)
	    %tc4		 Text capitalization using format #4
	    %fn7		 File name using format #7
	   "			 End of format codes

	 >%			 End of field code.

%< 	 Signals the start of a field code, just as’ ‘(’ tells BricsCAD that LISP code is starting, and ‘$(’ indicates the start
	 of Diesel code.
\ 	 Backslash Indicates that a metaword follows. In this case, \AcVar refers to “AutoCAD variable,” and that the
	 following word will be the name of a variable — Filename, in this case.

\f 	 Specifies that one or more format codes are to follow.
" " 	 Quotation marks delimit format codes; format codes are always held within the quotation marks.
% 	 Percent Indicates the start of a format code.
	 •  The first code, %tc, specifies the text capitalization. The value of 4 means that the text of the file
	 name is shown in title case, meaning the first letter of each word is capitalized.
	 •  The second format code, %fn7, specifies how much of the file name is displayed; a value of 7 means
	 that the path, file name, and file extension are all displayed.

>%	 Signals the end of the field code.

Here is another example of a field code. This one shows the properties of an object, a circle:
	 %<\AcObjProp Object(%<_ObjId 2126544536>%).Center \f “%lu2%pt3”>%

let’s pick it apart
	 %<					 Start of field code
	  \AcObjProp 				 Metatext for AutoCAD object properties
	  Object(%<_ObjId 2126544536>%)		 Object identified by number
	   .					 (Dot) Start of property
  	   Center				 Property: center coordinates of circle
	   \f 					 Metatext for format code
	    "					 Start of format code
	    %lu2				 Linear units style #2, decimal
	    %pt3				 Points style #3, x,y coordinates
	    "					 End of format code
	 >%					 End of field code

344    Customizing BricsCAD V20

Complete Field Code Reference

GROUPS
Fields belong to groups. All of them are found in one of the following group names:

Field Group			 Group Name			

Objects and named objects		 AcObjProp objectId
System variables			 AcVar varName
Diesel code			 AcDiesel code

METAWORDS
Fields use meta-words to allow additional information, such as a hyperlink or units. Meta-words
are identified by the backslash (\) prefix. The backslash is followed by text that is surrounded by
quotation marks ("). Here are a few examples:

Meta-word Meaning		 MetaWord			

Hyperlink address follows \	 	 \href "hyperlinkReference"
Formatting codes follow \		 \f "formatCodes"
Inches units follows \		 \"

FORMATTING
The text displayed by fields is formatted using the following format codes:

Formatting			 Format Code			

Decimal (.) places			 %.
Angular Units			 %au
Bytes (filesize)			 %by
Convert			 %ct
Decimal Separator		 %ds
File Name, path, and extension	 %fn
Linear Units			 %lu
Line Weight units			 %lw
Precision			 %pr
Points (x,y,z)		 	 %pt
Scale Factor			 %qf
Text Case			 %tc
Hexadecimal conversion	 	 %X

Some notes on format codes:

	 %X forces numbers to be displayed in hexadecimal notation (base 16)

	 %ld is a code used by file sizes; I haven’t figured out, but it seems to have no effect

	 %qf is used by scale factors, but employs values I haven’t figured out yet

Some codes use the same naming system as related variables. For example, %lu (linear units) uses
the same values as the LUnits system variable, such as 1 = scientific units and 2 = decimal units.

	 19  Coding with Field Text    345

COMPLETE FORMAT CODE REFERENCE
Here is a summary of all of the format codes employed by fields.

%tcn — Text Case
Specifies how to display the case of text.
Meaning				 Code					

No formatting		 blank
UPPERCASE		 %tc1	
lowercase		 %tc2
First capital		 %tc3
Title Case		 %tc4

%lun — Linear Units
Specifies how to display linear units. Values match those of the LUnits system variable. Decimal
units can use decimal separators; see %ds below.
Meaning				 Code					

No formatting		 blank
Scientific 		 %lu1
Decimal *		 %lu2
Engineering units	 %lu3
Architectural units	 %lu4
Fractional units	 %lu5
Current Units		 %lu6

%dsn — Decimal Separator
Decimal separators specify the character that separates thousands in decimal units (%lu2). Bric-
sCAD uses standard ASCII codes between 31 and 127 for specifying decimal separators. For the
meaning of ASCII codes, consult an ASCII table such as at http://www.asciitable.com. These are
just a few examples.
Meaning				 Code	 Notes				

Space separator	 %ds32
Comma (,) separator	 %ds44	 Used in North America
Decimal (.) separator	 %ds46	 Used in European countries
Angle (<) separator 	 %ds60
Letter A separator	 %ds65

%aun — Angular Units
Specifies how angular units are displayed, and matches the values used by the AUnits variable.
Meaning				 Code				

No formatting		 blank
Decimal degrees	 %au0
Deg/min/sec		 %au1
Grads		 %au2
Radians		 %au3
Surveyor’s Units	 %au4
Current units		 %au5

346    Customizing BricsCAD V20

%lwn — Line Weight units
Specifies the units by which to display lineweights; similar to LwUnits system variable.
Meaning				 Code				

Millimeters		 %lw1
Inches		 %lw2

%qfn — scale Factor
Specifies scale factor for plot and viewport scales.
Meaning				 Code				

Viewport custom scale	 %qf1
Plot scale		 %qf2816

%ctn — ConverT
Specifies how plot scales and areas are displayed:
Plot and Viewport Scales	 Code		 Notes  		
No scale		 blank
#:1		 %ct0		 #
1:#		 %ct1		 1/#
#”=1'0"		 %ct2		 12*#	

Area Scales 			 Code 	Notes 		
Square feet			 %ct3		 #
Square inches			 %ct4		 12*#	

%ptn — PointTs (xyz coordinates)
Specifies which coordinates to display; default displays all three (x, y, and z).
Meaning				 Code				

X, Y and Z		 none
X only		 %pt1
Y only		 %pt2
Z only		 %pt4
X and Y		 %pt3
X and Z		 %pt5
Y and Z		 %pt6

%.n — decimal places
Specifies number of decimal places displayed by real numbers:
Meaning				 Code				

8		 %.8
7		 %.7
6		 %.6
5		 %.5
4		 %.4
3		 %.3
2		 %.2
1		 %.1
0		 %.0

	 19  Coding with Field Text    347

%prn — display PRecision
Specifies fractional precision or number of decimal places displayed, in a manner similar to the
LuPrec system variable. Note that under some conditions, %pr7 and %pr8 display at most 1/64
precision.
Fractions	 Decimal Places	 Code				

1/256	 8	 %pr8 *

1/128	 7	 %pr7 *

1/64	 6	 %pr6
1/32	 5	 %pr5
1/16	 4	 %pr4
1/8	 3	 %pr3
1/4	 2	 %pr2
1/2	 1	 %pr1
1		 0	 %pr0

%FNN — FILE NAMES
Specifies how much of the file name to display.
Meaning				 Code				

No file name, path only		 %fn1
File name only, without extension	 %fn2
File name and path, without extension	 %fn3
File name with extension		 %fn6
File name with extension and path	 %fn7

%BYN — BYTES (FILE SIZE)
Specifies the format in which to display file sizes.
Meaning				 Code				

Bytes				 %by1
Kilobytes				 %by2
Megabytes				 %by3

HREF - HYPERLINKS
Specifies the format of hyperlinks.
Meaning				 Code						

\href 				 Indicates that a hyperlink address follows
#, 				 (Optional) Target
# 				 (Optional) Text to display
#0				 Indicates end of hyperlink address

348    Customizing BricsCAD V20

QUICK SUMMARY OF FIELD DATE AND TIME CODES

The date and time are formatted by the codes listed below; this list is more complete than the one provided by Bricsys.

Letters not used for codes are treated literally, such as c and Q. You can use characters as separators, such as / - and ,. The
number of characters sometimes affects the date and time displayed: one or two “d”s display the date of the month, while
three or four display the day of the week. Some codes are case-sensitive: uppercase M means month, while lowercase m
means minute. “System Time” means the date and time as formatted specified by Windows.

Format		 Comment				 Example			

Months (must use uppercase M)
M		 Number of month.			 3 (March)
MM		 Number with zero prefix.		 03
MMM		 Three-letter abbreviation.		 Mar
MMMM	 Full month name.			 March

Dates								
d		 Date of the month.			 6
dd		 Date, with zero prefix.		 06

Days								
ddd		 Abbreviated day of the week.		 Fri
dddd		 Full day name.			 Friday

Years (must use lowercase y)					
y		 Single digit year.			 6 (2006)
yy		 Two-digit year.			 06
yyy or yyyy	 Four-digit year.			 2006

Hours								
h		 12-hour clock.			 5
hh		 Hour with zero prefix.		 05
t		 Single-character AM or PM.		 A
tt		 Placeholder for AM or PM.		 AM
H		 24-hour clock.			 17
HH		 24-hour with zero prefix.		 07

Minutes (must use lowercase m)					
m		 Minutes.				 9
mm		 Minutes with zero prefix.		 09

Seconds							
s		 Seconds.				 8
ss		 Seconds with zero prefix.		 08

Examples of System Time (case sensitive)	
%c		 Date and time in short format.		 6/21/05	 4:18:06 PM	
%#c		 Date and time.			 Friday, June 21, 2005 4:18:06 PM	
%X		 Time.				 4:18:06 PM			
%x		 Date in short format.		 6/21/05				
%#x		 Date in long format.			 Friday, June 21, 2005			

	 19  Coding with Field Text    349

DATE & TIME FORMAT CODES
Format		 Field Codes	 Examples				

Year, Month, Day, Hour, Minute Seconds, and AM/PM

Month		 M		 8 (also 10, 11, 12)
		 MM		 08
		 MMM		 Aug
		 MMMM		 August

Day		 d		 3 (also 31)
		 dd		 03 (also 31)
		 dddd		 Sunday

Year		 yy		 04
		 yyyy		 2004

Hour		 h		 4 (also 12)
		 hh		 04 (also 12)

Minute		 m		 5 (also 59)
		 mm		 05 (also 59)

Second		 s		 2 (also 59)
		 ss		 02 (also 59)

am or pm		 tt		 AM, PM (leave out for 24-hour clock)

Regional long date		 %#x		 Saturday, July 31, 2004
Regional long date and time	 %#c		 Saturday, July 31, 2004 7:45:19 PM
Regional short date	 %x		 7/31/2004		
Regional date and time	 %c		 7/31/2004 7:45:19 PM
Regional time		 %XX		 7:45:19 PM		

Format		 Field Codes	 Examples				

Alternative Day, Date, Month, Year, time, and AM/PM

Date		 D		 1	
Date with zero prefix	 DD		 01	
Abbreviated day name	 DDD		 Sat.	
Full day name		 DDDD		 Saturday		
Month		 M		 3	
Month with zero prefix	 MO		 03	
Abbreviated month name	 MON		 Mar.
Full month name		 MONTH		 March	
Abbreviated year		 YY		 04	
Full year		 YYYY		 2004	

Hour		 H		 9	
Hour with zero prefix	 HH		 09	
Minutes with zero prefix	 MM		 03	
Seconds with zero prefix	 SS		 08	
Millisecond (1/1000 of a sec)	 MSEC		 257	
Displays AM or PM		 AM/PM		 AM	
Displays am or pm		 am/pm		 am	
Displays A or P		 A/P		 A	
Displays a or p		 a/p		 a

350    Customizing BricsCAD V20

Objects and Property Names
In general, objects employ the following field text coding:
	 %<\AcObjProp Object(%<_ObjId idNumber>%).property [\f “format”]>%

	 idNumber identifies the object

	 property describes the object’s property; named objects are similar, but are restricted to the .property prop-

erty

	 format is optional, and formats the property

Here is an example with formatting:
	 %<\AcObjProp Object(%<_ObjId 2130015880>%).LinetypeScale \f “%tc1”>%=

And without formatting:
	 %<\AcObjProp Object(%<_ObjId 2130015880>%).LinetypeScale>%

TIP  Thanks to www.cadforum.cz for identifying that %X is the code for hex format.

PROPERTIES IN COMMON
Here are the properties common to all entities:
Property Name		 Field Code		 Formatting		

Color		 TrueColor		 Text
Layer		 Layer			 Text
Linetype		 Linetype			 Text
Linetype Scale 	 LinetypeScale		 Linear units
Lineweight 		 Lineweight		 Measurement

Material 		 Material			 Text
Object Name		 ObjectName		 Text
Plot Style 		 PlotStyleName		 Text
Position		 Coordinates		 Linear units
Slope		 Slope			 Angular units
Thickness		 Thickness		 Linear units
Transparency		 EntityTransparency	 Text
UCS Elevation		 UCSElevation		 Text

OBJECT PROPERTIES
Most entities have a few (or many!) properties,but some have no additional properties. Here is a list
of entities and field properties unique to them (i.e. excluding the common properties listed above).

Arcs
Property Name		 Field Code		 Formatting		

Arc Length		 ArcLength		 Linear units
Area		 Area			 Linear units
Center		 Center			 Linear units & XYZ
End		 EndPoint			 Linear units & XYZ
End Angle		 EndAngle			 Angular units
Normal		 Normal			 Linear units & XYZ
Radius		 Radius			 Linear units
Start		 StartPoint		 Linear units & XYZ
Start Angle		 StartAngle		 Angular units
Total Angle		 TotalAngle		 Angular units

	 19  Coding with Field Text    351

Attribute Definition
Single-line text properties, plus these:
Property Name		 Field Code	 Formatting			

Constant		 Constant		 Text	
Invisible		 Invisible	 Text
Lock Position		 LockPosition	 Text
Preset		 Preset		 Text
Prompt		 PromptString	 Text
Tag		 TagString	 Text
Verify		 Verify		 Text

Associative Dimensions
Field Name		 Field Code	 Formatting			

Associative	 Associative	 Text

Blocks, Block Placeholders, and External References
Property Name		 Field Code	 Formatting			

Block Unit 		 InsUnits		 Units
Name		 Name		 Text
Position		 InsertionPoint	 Linear units & XYZ
Prompt 1		 TextString	 Text
Rotation		 Rotation		 Angular units
Scale X		 XScaleFactor	 Linear units
Scale Y		 YScaleFactor	 Linear units
Scale Z		 ZScaleFactor	 Linear units
Unit Factor 		 Unit Factor	 Linear units

1 Found in blocks with attributes.

Circles
Property Name		 Field Code	 Formatting			

Area		 Area		 Linear units
Center		 Center		 Linear units and XYZ
Circumference		 Circumference	 Linear units
Diameter		 Diameter		 Linear units
Normal		 Normal		 Linear units and XYZ
Radius		 Radius		 Linear units

Ellipses
Property Name		 Field Code	 Formatting			

 Area		 Area		 Linear units
 Center		 Center		 Linear units & XYZ

End		 EndPoint		 Linear units & XYZ
End Angle		 EndAngle		 Angular units
End Point		 EndPoint		 Linear units
Major Axis Vector		 MajorAxis	 Linear units & XYZ
Major Radius		 MajorRadius	 Linear units
Minor Axis Vector		 MinorAxis	 Linear units & XYZ
Minor Radius		 MinorRadius	 Linear units
Radius Ratio		 RadiusRatio	 Linear units
Start Point		 StartPoint	 Linear units & XYZ
Start Angle		 StartAngle	 Angular units

352    Customizing BricsCAD V20

Hatches
Property Name		 Field Code		 Formatting		

Angle		 Angle			 Angular units
Area		 Area			 Linear units
Associative		 AssociativeHatch		 Text
Double		 PatternDouble		 Text
Elevation		 Elevation		 Linear units
Island Detection Style	 HatchStyle		 Text
Origin Point		 Origin			 Linear units
Pattern Name		 PatternName		 Text
Scale		 PatternScale		 Linear units
Spacing		 PatternSpace		 Linear units
Type		 PatternType		 Text

Leaders
No additional properties

Lines
Property Name		 Field Code		 Formatting		

Angle		 Angle			 Angular units
Delta		 Delta			 Angular units & XYZ
End Point		 EndPoint			 Angular units & XYZ
Length		 Length			 Linear units
Start Point		 StartPoint		 Angular units & XYZ

Mtext
Property Name		 Field Code		 Formatting		

Contents		 TextString		 Text
Direction		 DrawingDirection		 none
Height		 Height			 Linear units
Line Space Factor	 LineSpacingFactor	 Linear units
Line Space Style	 LineSpacingStyle		 Text
Position		 InsertionPoint		 Linear units & XYZ
Rotation		 Rotation			 Angular units
Style		 StyleName		 Text
Width 		 Width			 Linear units

OLE (object linking and embedding) objects
No additional properties

Polylines
Polylines include donuts, rectangles, polygons, revclouds, and certain ellipses.
Property Name		 Field Code		 Formatting		

Area		 Area			 Area units
Closed		 Closed			 none
Elevation		 Elevation		 Linear units
Global Width		 ConstantWidth		 Linear units
Length		 Length			 Linear units
Linetype Generation	 LinetypeGeneration	 none

	 19  Coding with Field Text    353

Polygon Meshes
Property Name		 Field Code		 Formatting		

M Closed		 MClose			 Text
M Density		 MDensity			 none
M Vertex Count		 MVertexCount		 none
N Closed		 NClose			 Text
N Density		 NDensity			 none
N Vertex Count		 NVertexCount		 none

Polyface Meshes
No additional properties

Raster Images
Property Name		 Field Code		 Formatting		

Name		 Image name		 Text
Position		 Insertion Point		 Linear units
Rotation		 Rotation			 Angular units
Width		 ImageWidth		 Linear units

Regions
Property Name		 Field Code		 Formatting		

Area		 Area			 Area units
Perimeter		 Perimeter		 Linear units

Rays and Xlines
Property Name		 Field Code		 Formatting		

Basepoint		 BasePoint		 Linear units & XYZ
Direction Vector	 DirectionVector		 Linear units & XYZ
Second Point		 SecondPoint		 Linear units & XYZ

Shapes
Property Name		 Field Code		 Formatting		

Name		 Name			 Text
Obliquing		 ObliqueAngle		 Angular units
Position		 InsertionPoint		 Linear units & XYZ
Rotation		 Rotation			 Angular units
Size		 Height			 Linear units
Width Factor		 ScaleFactor		 Linear units

Single-line Text
Property Name		 Field Code		 Formatting		

Backward		 Backward			 Text
Contents		 TextString		 Text
Height		 Height			 Linear units
Justify		 Alignment		 Text
Obliquing		 ObliqueAngle		 Angular units
Position		 InsertionPoint		 Linear units & XYZ
Rotation		 Rotation			 Angular units
Style		 StyleName		 Text
Text Alignment		 TextAlignmentPoint	 Linear units & XYZ
Upside Down		 UpsideDown		 Text
Width Factor		 ScaleFactor		 Linear units

354    Customizing BricsCAD V20

Splines
Property Name		 Field Code		 Formatting		

Area		 Area			 Area units
Closed		 Closed			 none
Control Points		 NumberOfControlPoints	 none
Degree		 Degree			 none
End Tangent		 EndTangent		 Linear units & XYZ
Fit Tolerance		 FitTolerance		 Linear units
Fit Points		 NumberOfFitPoints	 none
Planar		 Planar			 none
Start Tangent		 StartTangent		 Linear units

Tables
Property Name		 Field Code		 Formatting		

Columns		 Columns			 none
Direction		 FlowDirection		 none
Height		 Height			 Linear units
Horizontal cell margin	 HorzCellMargin		 Linear units
Position		 InsertionPoint		 Linear units & XYZ
Rows		 Rows			 none
Style		 StyleName		 Text
Width		 Width			 Linear units

Tolerances
Property Name		 Field Code		 Formatting		

Position		 InsertionPoint		 Linear units & XYZ
Text Height		 Text Height		 Linear units

Viewports
Property Name		 Field Code		 Formatting		

Center			 Center			 Linear units & XYZ
Height		 Height			 Linear units
Width		 Width			 Linear units

3D Faces
No additional properties

3D Polylines
Property Name		 Field Code		 Formatting		

Closed		 Closed			 Text
Fit/Smooth		 Type			 Text
Length		 Length			 Linear units

3D Solids
Property Name		 Field Code		 Formatting		

Area		 Area			 Linear units
Centroid		 Centroid			 Linear units, XYZ
Gyration Radii		 GyrationRadiii		 Linear units, XYZ
Moments of Inertia	 MomentsOfInertia		 Linear units, XYZ
Product of Inertia XY	 ProductOfInertiaXY	 Linear units
Product of Inertia XZ	 ProductOfInertiaXZ	 Linear units
Product of Inertia YZ	 ProductOfInertiaYZ	 Linear units
Volume		 Volume			 Linear units

	 19  Coding with Field Text    355

Sheet SetS
Property Name		 Field Code			 Formatting		

CurrentSheetCategory		 Sheet.Category			 Text
CurrentSheetCustom	 Sheet.				 Text
CurrentSheetDescription		 Sheet.Description		 Text
CurrentSheetIssuePurpose		 Sheet.IssuePurpose		 Text
CurrentSheetNumber		 Sheet.Number			 Text
CurrentSheetNumberAndTitle		 Sheet.NumberAndTitle		 Text
CurrentSheetRevisionDate		 Sheet.RevisionDate		 Text
CurrentSheetRevisionNumber		 Sheet.RevisionNumber		 Text

CurrentSheetSet		 SheetSet.Name			 Text
CurrentSheetSetCustom		 SheetSet.			 Text
CurrentSheetSetDescription		 SheetSet.Description		 Text

CurrentSheetProjectMilestone		 SheetSet.ProjectMilestone	 Text
CurrentSheetProjectName		 SheetSet.ProjectName		 Text
CurrentSheetProjectNumber		 SheetSet.ProjectNumber		 Text
CurrentSheetProjectPhase		 SheetSet.ProjectPhase		 Text

CurrentSheetSetCount		 SheetSet.SheetCount		 Text
CurrentSheetSubSet		 Subset.Name			 Text
CurrentSheetSetSubSheetCount		 Subset.SheetCount		 Text
CurrentSheetTitle		 Sheet.Title			 Text

NAMED OBJECT PROPERTIES
Named objects are entities that have names or style names: you access them by name. The entities
that fall into this category are as follows:

ÐÐ Layer names

ÐÐ Linetype names

ÐÐ View names

ÐÐ Dimension styles

ÐÐ Text styles

ÐÐ Table styles

As of writing, you can only access the names related to each named object.

356    Customizing BricsCAD V20

Notes

Programming BricsCAD
PART III

Notes

Writing Scripts

BricsCAD’s clearest programming possibility is the script. In this chapter, you learn how to
write scripts, and how to use its built-in script recording feature.

CHAPTER SUMMARY

The following topics are covered in this chapter:

•	 Understanding scripts

•	 Learning about drawbacks to scripts

•	 Employing script commands and modifiers

•	 Using special characters.

•	 Recording scripts

CHAPTER 20

360    Customizing BricsCAD V20

What are Scripts?

Scripts mimic what you type at the keyboard. Anything you type at the ‘:’ command prompt can
be put in a script file. That includes BricsCAD commands, their options, your responses, and —
significantly— LISP code.

Mouse actions, however, cannot be included in script files, such as selecting dialog box and toolbar
buttons. Scripts are strictly keyboard-oriented.

The purpose of scripts is to reduce the number of keystrokes you type. By placing the keystrokes
and coordinate picks in a file, the file reruns your previously-entered commands. (Think of scripts
as a predecessor to macros.)

A script file that draws a line and a circle might look like this:
	 line 1,1 2,2
	 circle 2,2 1

In this script, the Line command starts, and then is given two sets of x,y coordinates, (1,1) and
(2,2). The Circle command starts, and is given a center point (2,2) and a radius (1). Hidden are the
extra space at the end of each line, which are like pressing the Spacebar to end a command. In this
chapter, I show hidden spaces with this character: ▄ .

Scripts are stored in files that have the .scr extension. Script files consist of plain ASCII text format.
For this reason, do not use a word processor, such as Libre Office. Instead, to write scripts use a
text editor, such as Notepad in Windows, Text Edit in Linux, or TextEdit in Mac.

You can use the BricsCAD script creation command RecScript (short for “record script”) to record
your scripts. Or you can enter the command text directly into an .scr file: when I feel like a DOS
power user, I’ll write the script in the Windows command prompt (press Windows+R, and then
enter the Cmd command):
C:\> copy con filename.scr
;This is the script file
line▄1,1▄2,2▄
circle▄2,2▄1▄

When I’m done, I press Ctrl+Z to tell the operating system that I’ve finished editing, and to close
the file.

	 20  Writing Scripts    361

DRAWBACKS TO SCRIPTS
A limitation to scripts is that just one script file can be loaded into BricsCAD at a time. A script file
can, however, call another script file. Or, you can use some other customization facility to load ad-
ditional script files, such as with toolboxes, menu macros, and LISP routines.

Another limitation is that scripts stall when they encounter invalid command syntax. I sometimes
have to go through the code-debug cycle a few times to get the script correct.

It is useful to have an BricsCAD reference text on hand that lists all command names and their options.

Strictly Command-Line Oriented
Another limitations is significant in this age of GUIs (graphical user interfaces): scripts cannot
control mouse movements nor actions in dialog boxes. This is a reason that nearly all commands
that display dialog boxes also have a command-line equivalent. But different commands handle
this differently:

ÐÐ Some commands have different names. For example, to control layers, there is the Layer for the dialog box
and -Layer for the command line. If the script needs to create or change a layer, use the -Layer command, or
better yet the CLayer system variable, as follows:

	 ; Change layer:
	 clayer▄layername▄

ÐÐ Some commands need system variable FileDia turned off. This forces commands that display the Open File
and Save File dialog boxes — such as Open, Script, and VSlide — to prompt for filenames at the command
line. Thus, script files should include the following lines to turn off file dialog boxes:

	 ; Turn off dialog boxes:
	 filedia▄0▄

	 ; Load slide file:
	 vslide▄filename▄

ÐÐ When FileDia is turned off, use the ~ (tilde) as a filename prefix to force the display of the dialog box. For
example:

	 : script
	 Script to run: ~ (BricsCAD displays Run Script dialog box.)

ÐÐ Some commands have no command-line equivalent, such as the Plot command. Instead, when this command
is used in a script, the command-line version appears automatically.

ÐÐ While BricsCAD accepts command aliases with - (hyphen) prefixes to force the command-line version of com-
mands, it lacks the hyphen-commands found in AutoCAD.

362    Customizing BricsCAD V20

Recording with RecScript

The RecScript command records keystrokes, and then saves them to an .scr script file.

The StopScript command tells BricsCAD to stop recording.

The Script command plays back the script.

Let’s see how this works. Record a script for darwing a rectangular border sized 24x26 units:

1.	 In a new drawing, start the RecScript command. (Alternatively, from the Tools menu select Record Script.)

Notice the Record Script dialog box.

Starting to record a script by giving it a file name

2.	 Enter a file name for the script. It can be any name that will remind you of the script’s function, and can be up

to 255 characters long. For this tutorial, enter border, and then click Save.

3.	 Notice that the dialog box goes away, and that BricsCAD appears to be doing nothing. In fact, it is waiting for

you to enter commands. Enter the commands and options shown in boldface:
: rectang
Chamfer/Elevation/Fillet/Rotated/Square/Thickness/Width/Area/Dimensions/<Select first cor-
ner of rectangle>: 0,0
Other corner of rectangle: 36,24

: zoom
Zoom: In/Out/All/Center/Dynamic/Extents/Left/Previous/Right/Scale/Window/<Scale (nX/
nXP)>: e

4.	 When done, enter the StopScript command to signal BricsCAD that you are done:
	 : stopscript

5. 	 Now run the script with the Script command, as follows:

a.	 Start a new drawing with the New command, so that you can see the effect of the script.

b. 	 Enter the Script command.

c. 	 Notice the Run Script dialog box. Choose border.scr, and then click Open.

	 Notice that the script instantly draws the rectangle, and then zooms the drawing to the extents of the newly-

drawn border. Indeed, it may occur so fast that you don’t notice it!

TIP  You can use the mouse to pick points in the drawing during commands that are being recorded by

the RecScript command. BricsCAD records the pick points as x,y coordinates.

	 20  Writing Scripts    363

Writing Scripts by Hand

While BricsCAD has commands for creating and running scripts, it has not command for editing
them. If you want to change the coordinates used by the Rectang command, you have to edit the
script file with Notepad in Windows, Text Edit in Linux, or TextEdit in Mac.

Here is how it works:

1.	 Open the border.scr file in the text editor.

TIP	 If you are not sure where the border.scr file is located on your computer, here is a quick way to
find and open it in Windows: start the Script command, and then in the dialog box right-click the .src file.
From the shortcut menu, select Open. Notice that the file opens in Notepad.

	 Notice the commands and options that you entered during the script recording session:

Entering a script in a text editor

2.	 Let’s change the size of the border to 18x24. Edit the “36,24” text, replacing it with...
	 18,24

3.	 Let’s also add the command for placing the rectangle on a layer named “Border” and colored blue:

a.	 Place the cursor in front of “rectang,” and then press Enter to make an empty line.

b.	 Enter the following text:
	 -layer
	 make
	 border
	 color
	 red
	 ▄		 <-- One blank line
	 ▄		 <-- A second blank line

c.	 Make sure you include two blank lines; these act like pressing Enter during commands. The file should

look like this now:

Adding Enters to the script

364    Customizing BricsCAD V20

4.	 Save the file with the File | Save command.

5.	 Return to BricsCAD, and then start a new drawing.

6.	 Use the Script command to test that the border.scr file is operating correctly. You should see a red rectangle.

Border drawn by the script

Script Commands and Modifiers

There are a grand total of four commands that relate specifically to scripts. In fact, these commands
are of absolutely no use for any other purpose. In addition, BricsCAD has the RecScript command
for recording scripts, as described earlier in this chapter.

In rough order of importance, the four basic commands are:

SCRIPT
The Script command performs double-duty: (1) it loads a script file; and (2) immediately begins
running it. Use it like this:
: script
Script to run: filename

Remember to turn off (set to 0) the FileDia system variable so that the prompts appear at the
command line, instead of the dialog box.

RSCRIPT
Short for “repeat script,” this command reruns whatever script is currently loaded in BricsCAD. A
great way to create infinite loops. There are no options:
: rscript

RESUME
This command resumes a paused script file. Pause a script file by pressing the Backspace key.
Again, no options:
: resume

	 20  Writing Scripts    365

DELAY
To create a pause in a script file without human intervention, use the Delay command along with
a number. The number specifies the pause in milliseconds, where 1,000 milliseconds equal one
second. The minimum delay is 1 millisecond; the maximum is 32767 milliseconds, which is just
under 33 seconds.

While you could use Delay at the ‘:’ prompt, that makes little sense; instead, Delay is used in a
script file to wait while a slide file is displayed or to slow down the script file enough for humans
to watch the process, like this:
; Pause script for ten seconds:
delay 10000

SPECIAL CHARACTERS
In addition to the script-specific commands, there are some special characters and keys.

Enter - (space)
The most important special characters are invisible: both the space and the carriage return (or
end-of-line) are the equivelant to when you press the spacebar or Enter keys. In fact, both are
interchangeable. But the tricky part is that they are invisible. Sometimes, I’ll write a script that
requires a bunch of blank space because the command requires that I press the enter key several
times in a row. AttEdit is an excellent example:
; Edit the attributes one at a time:
attedit 1,2

How many spaces are there between attedit and the coordinates 1,2? I’ll wait while you count them...

For this reason, it is better to place one script item per line, like this:
; Edit the attributes one at a time:
attedit

1,2

Now it’s easier to count the four spaces, since there is one per blank line.

Comment - ;
You probably have already noticed that the semicolon lets you insert comments in a script file.
BricsCAD ignores anything following the semicolon.

366    Customizing BricsCAD V20

Transparent - '
Scripts can be run transparently during a command. Simply prefix the Script command with an
apostrophe to run a script while another command is active, like this:
: line
Start of line: 'script
Script to run: filename

All four of BricsCAD’s script-specific commands are transparent, even 'Delay. That lets you create
a delay during the operation of a command — as if I needed an excuse to run BricsCAD slowly!

Pause - Backspace
...is the key I mentioned earlier for pausing a script file.

Stop - esc
...stops a script file dead in its tracks; use the RScript command to start it up again from the beginning

Programming with LISP

While toolbar and menu macros are easy to write and edit, they limit your ability to control
BricsCAD. In this chapter, we look at the most powerful method available to “non-programmers”
for customizing BricsCAD — the LISP programming language — at the cost of being somewhat
more difficult to create than macros or scripts.

This chapter shows you how to write programs using LISP, while appendix C provides a concise
reference to LISP functions.

CHAPTER SUMMARY

The following topics are covered in this chapter:

•	 Learning the history of LISP in BricsCAD

•	 Checking the compatibility between LISP and AutoLISP

•	 Introducing the LISP programming language

•	 Employing simple LISP to add two numbers

•	 Using LISP in commands

•	 Overviewing LISP functions and external command functions

•	 Accessing system variables.

•	 Using advanced LISP functions

•	 Writing a simple LISP program

•	 Saving data to files

CHAPTER 21

368    Customizing BricsCAD V20

The History of LISP in BricsCAD

LISP is one of the earliest programming languages, developed in the late 1950s to assist artificial
intelligence research. Its name is short for “list processing,” and it was designed to handle lists of
words, numbers, and symbols.

LISP first appeared in CAD when, back in 1985, Autodesk added an undocumented feature to Auto-
CAD v2.15 called “Variables and Expressions.” Programmers at Autodesk had taken XLISP, a public
domain dialect written by David Betz, and adapted it for AutoCAD. The initial release of Variables
and Expressions was weak, because it lacked conditional statements -- needed by programming
languages to make decisions.

With additioanl releases, Autodesk added the missing programming statements, the powerful
GETxxx, SSxxx, and EntMod routines (that provide direct access to entities in the drawing database),
and they renamed the programming language “AutoLISP.” This allowed third-party developers to
wrote routines that manipulated the entire drawing, and non-programmers to write simple routines
that automated everyday drafting activities.

When SoftDesk developed IntelliCAD, they included a programming language very similar to Au-
toLISP, calling it simply “LISP.” (I think it would have been better to call it IntelliLISP to prevent
confusion with the real LISP programming language. Better yet, they could have given it the trendy
moniker of iLISP.)

BLADE ENVIRONMENT
BricsCAD includes LISP, and supports VisualLISP (not covered by this book). With V18, Bric-
sys includes an advanced LISP authoring environment called Blade: Bricsys LISP advanced
development environment (not covered by this book). To start it, enter the blade command
from within BricsCAD. More information about Blade search online for “bricsys blade,” such as
https://blog.bricsys.com/inside-bricsys-blade/.

COMPATIBILITY BETWEEN LISP AND AUTOLISP
LISP in BricsCAD is, for the most part, compatible with AutoCAD’s AutoLISP. If you know AutoLISP,
you can program immediately in LISP, including controlling dialog boxes. LISP has, however, some
differences of which you should be aware.

	 21  Programming with LISP    369

Additional LISP Functions
LISP in BricsCAD contains additional functions not found in AutoLISP. These include the following:

LISP Function		 Meaning							

acos			 Arc cosine
asin			 Arc sine
atanh			 Hyperbolic arc tangent
ceiling			 smallest integer that is not smaller than x.
cosh			 Hyperbolic cosine
find			 Finds an item in a list
floor 			 Greatest integer less than or equal to x
get_diskserialid		 Unique nine-digit id string
getpid			 Process ID of the current process
grarc			 Draws a temporary arc or circle, with specified radius and color; optionally highlighted
grfill			 Draws temporary filled polygon area, with specified color; optionally in highlighted mode
log10			 Log 10
position 		 Index number of an item in a list
remove 		 Removes an item from a list
round 			 Rounds to the nearest integer
search 			 Searches for an item, and returns its list number
sinh			 Hyperbolic sine
sleep 			 Pause execution
string-split 		 Splits a string based on a delimiter
tan 			 Tangent
tanh 			 Hyperbolic tangent
until 		 	 Tests the expression until it is true
vla-collection->list	 Returns a collection as a LISP list

Different LISP Functions
LISP has several functions that operate differently from AutoLISP, by providing additional support.

These include:

LISP Function 		 Comment							

osnap			 Supports PLA (planview) entity snap for snapping to 2D intersections.
ssget and ssadd		 Supports additional selection modes:
			  CC - Crossing Circle
			  O - Outside
			  OC - Outside Circle
			  OP - Outside Polygon
			  PO -POint

Missing AutoLISP Functions
LISP lacks some functions found in AutoLISP. Because of the dynamic nature of LISP, it’s difficult to
create a definitive list. Here are some of the functions I have found missing:

ÐÐ All dict-related functions.

ÐÐ All SQL-related functions, which link between objects in the AutoCAD drawing with records in an external
database file. In AutoCAD, these functions start with “ase_”, as in ase_lsunite and ase_docmp.

370    Customizing BricsCAD V20

The LISP Programming Language

LISP is capable of many masks, from adding together two numbers — during the middle of a
command — to drawing parametrically a staircase in 3D, to generating a new user interface for
BricsCAD, to manipulating data in the drawing database.

The most important aspect of LISP, in my opinion, is that it lets you toss off a few lines of code to
help automate your work. In this chapter’s tutorials, I show you how to write simple LISP code that
makes your BricsCAD drafting day easier.

In contrast, BricsCAD’s most powerful programming facility — known as SDS (solutions develop-
ment system) — is merely an interface: you have to buy additional the programming tools (read:
$$$) and have an in-depth knowledge of advanced programming methodology. The primary ad-
vantage to using SDS is speed: these programs run compute-intensive code as much as 100 times
faster than LISP.

SIMPLE LISP: ADDING TWO NUMBERS
With that bit of background, let’s dive right into using LISP. Let’s start with something easy, some-
thing everyone knows about, adding together two numbers, like 9 plus 7.

1.	 Start BricsCAD, any version; there is no need to open a drawing.

2.	 When the ‘:’ command prompt appears, type the boldface text, shown below, on the keyboard:
	 : (+ 9 7) (Press enter.)
	 16
	 :

	 BricsCAD instantly replies with the answer, 16. (In this chapter, I show the function I’m talking about in cyan.)

Getting to this answer through (+ 9 7) may, however, seem convoluted to you. That’s because LISP uses

prefix notation:

The operator + appears before the operands, 9 and 7.

	 Think of it in terms of “add 9 and 7.” This is similar to how BricsCAD itself works: type in the command name

first (such as Circle), and then enter the coordinates of the circle.

3.	 Notice the parentheses that surround the LISP statement. Every opening parenthesis, (, requires a closing pa-

renthesis,). I can tell you right now that balancing parentheses is the most frustrating aspect to LISP. Here’s

what happens when you leave out the closing parentheses:
	 : (+ 9 7 (Press enter.)
	 Missing: 1) >

	 BricsCAD displays the “Missing: 1)” prompt to tell you that one closing parenthesis is missing. If two closing

parentheses were missing, the prompt would read “Missing: 2)”.

4.	 Type the missing) and BricsCAD is satisfied:
	 Missing: 1) >) (Press enter.)
	 16
	 :

5. 	 The parentheses serve a second purpose: they alert BricsCAD that you are using LISP. If you were to enter

	 21  Programming with LISP    371

the same LISP function ‘+ 7 9’ without parentheses, BricsCAD would react unfavorably to each character

typed, interpreting each space as the end of a command name:
	 : + (Press the spacebar.)
	 Unable to recognize command. Please try again.

	 : 9 (Press the spacebar.)
	 Unable to recognize command. Please try again.

	 : 7 (Press the spacebar.)
	 Unable to recognize command. Please try again.
	 :

6.	 As you might suspect, LISP provides all the basic arithmetic functions: addition, subtraction, multiplication,

and division. Try each of the functions, subtraction first:
	 : (- 9 7)
	 2
	 :

7.	 Multiplication is done using the familiar * (asterisk) symbol, as follows:
	 : (* 9 7)
	 63
	 :

8.	 Finally, division is performed with the / (slash) symbol:
	 : (/ 9 7)
	 1
	 :

	 Oops, that’s not correct! Dividing 9 by 7 is 1.28571, not 1. What happened? Up until now, you have been

working with integer numbers (also known as whole numbers). For that reason, LISP has been returning the

results as integer numbers, although this was not apparent until you performed the division.

	 To work with real numbers, add a decimal suffix, which can be as simple as .0 — this converts integers to real

numbers, and forces LISP to perform real-number division, as follows:
	 : (/ 9.0 7)
	 1.28571
	 :

	 And LISP returns the answer correct to five decimal places.

9.	 Let’s see how LISP lets you nest calculations. “Nest” means to perform more than one calculation at a time.
	 : (+ (- (* (/ 9.0 7.0) 4) 3) 2)
	 4.14286
	 :

	 Note how the parentheses aid in separating the nesting of the terms.

LISP IN COMMANDS
Okay, so we’ve learned how BricsCAD works as a $495 four-function calculator. This overpriced
calculator pays its way when you employ LISP to perform calculations within commands. For ex-
ample, you may need to draw a linear array of seven circles to fit in a 9” space.

1.	 Start the Circle command, as follows:
	 : circle
	 2Point/3Point/RadTanTan/Arc/Multiple/<Center of circle>: (Pick a point.)

2.	 Instead of typing the value for the diameter, enter the LISP equation, as follows:
	 Diameter/<Radius>: (/ 9.0 7)

	 Diameter/<Radius>: 1.28571

372    Customizing BricsCAD V20

	 BricsCAD draws a circle with a diameter of 1.28571 inches. You can use an appropriate LISP function anytime

BricsCAD expects user input.

3.	 Now go on to the Array command, and draw the other six circles, as follows:
	 : array
	 Select entities to array: L
	 Entities in set: 1 Select entities to array: (Press enter.)
	 Type of array: Polar/<Rectangular>: r
	 Number of rows in the array <1>: (Press enter.)
	 Number of columns <1>: 7
	 Horizontal distance between columns: (/ 0.9 7)
	 Horizontal distance between columns: 0.128571

	 Once again, you use LISP to specify the array spacing, which happens to equal the circle diameter.

REMEMBERING THE RESULT: SETQ
In the above example, you used the (/ 9.0 7) equation twice: once in the Circle command and again
in Array. Just as the M-key on a calculator lets it remember the result of your calculation, LISP can
be made to remember the results of all your calculations.

To do this, employ the most common LISP function, known as setq. This curiously named function
is short for SET eQual to.

1.	 To save the result of a calculation, use the setq function together with a variable, as follows:
	 : (setq x (/ 9.0 7))
	 1.28571
	 :

	 Here, x remembers the result of the (/ 9.0 7.0) calculation. Notice the extra set of parentheses.

	 From algebra class, you probably recall equations like ‘x = 7 + 9’ and ‘x = 7 / 9’. The x is known as a variable

because it can have any value.

2.	 To prove to yourself that x contains the value of 1.28571, use BricsCAD’s ! (exclamation) prefix, as follows:
 : !x
 1.28571
 :

	 The ! prefix (sometimes called “bang”) is useful for reminding yourself of the value contained by a variable, in

case you’ve forgotten, or are wondering what happened during the calculation.

	 LISP isn’t limited to just one variable. You can make up any combination of characters to create variable

names, such as pt1, diameter, and yvalue. The only limitation is that you cannot use LISP function names,

such as setq, T, and getint. In fact, it is good to create variable names that reflect the content, such as the

circle diameter calculated above. But you also want to balance a descriptive name, such as diameter, with

minimized typing, such as x. A good compromise is dia.

3.	 You make one variable equal another, as follows:
	 : (setq dia x)
	 1.28571

	 : !dia
	 1.28571
	 :

4.	 Redo the Circle and Array commands, this time using variable dia, as follows:
	 : circle
	 2Point/3Point/RadTanTan/Arc/Multiple/<Center of circle>: (Pick a point.)
	 Diameter/<Radius>: !dia
	 Diameter/<Radius>: 1.28571

	 21  Programming with LISP    373

	 : array
	 Select entities to array: L
	 Entities in set: 1 Select entities to array: (Press enter.)
	 Type of array: Polar/<Rectangular>: r
	 Number of rows in the array <1>: (Press enter.)
	 Number of columns <1>: 7
	 Horizontal distance between columns: !dia
	 Horizontal distance between columns: 0.128571

BricsCAD draws precisely the same seven circles, using the value 1.28571 stored in dia.

LISP Function Overview

LISP is so powerful that it can manipulate almost any aspect of the BricsCAD drawing. In the follow-
ing tutorial, you get a taste of the many different kinds of functions LISP offers you for manipulating
numbers and words. As we start on our whirlwind tour of several groups of functions, start BricsCAD,
and then type the examples in the Prompt History window (press F2) at the ‘:’ command prompt.

MATH FUNCTIONS
In addition to the four basic arithmetic functions, LISP has many of the mathematical functions you
might expect in a programming language. The list includes trigonometric, logarithmic, logical, and
bit manipulation functions; one type of function missing is matrix manipulation.

For example, the min function returns the smallest (minimum) of a list of numbers:
: (min 7 3 5 11)
3

To remember the result of this function, add setq with variable minnbr, as follows:
: (setq minnbr (min 7 3 5 11))
3

Now each time you want to refer to the minimum value of that series of numbers, you can refer to
variable minnbr. Here’s an example of a trig function, sine:
: (sin minnbr)
0.14112

Returns the sine of the angle of 3 radians.

374    Customizing BricsCAD V20

TIPS  You must provide the angle in radians, not degrees. This is many times an inconvenience, because
often you work with degrees, but must convert them to radians.
	 Fortunately, LISP can do this for you, as long as you code it correctly. Recall that there are 2*pi
(approximately 6.282) radians in 360 degrees. For example, to get the sine of 45 degrees, you have to
indulge in some fancy footwork:
 : (sin (* (/ 45 180.0) pi))
 0.707107

Here I divided the degrees (45) by 180, then multiplied by pi. Either the 45 or the 180 needs a decimal (.0)
to force division by real numbers, rather than by integers.

By the way, pi is the only constant predefined in LISP, and is equal to 3.1415926. That means you just type
pi, instead of 3.1415926 each time you need the value of pi in a function. To see this for yourself, use the
exclamation mark at the command prompt:
 : !pi
 3.14159

LISP displays the result to six decimal places, even though it performs calculations to 32-bit accuracy.

GEOMETRIC FUNCTIONS
Since CAD deals with geometry, LISP has a number of functions for dealing with geometry.

Distance Between Two Points
The LISP distance function is similar to BricsCAD’s Dist command: it returns the 3D distance
between two points. To see how it works, first assign x,y-coordinates to a pair of points, p1 and
p2, as follows:
: (setq p1 '(1.3 5.7))
(1.3 5.7)

: (setq p2 '(7.5 3.1 11))
(7.5 3.1 11)

: (distance p1 p2)
6.72309

You may have missed that single quote mark in front of the list of x,y-coordinates, as in: '(1.3 5.7).
That tells LISP you are creating a pair (or triple in the case of x,y,z) of coordinates, and that it should
not evaluate the numbers. Technically, the ‘ mark creates a list of numbers.

To separate the coordinates use spaces, not commas. Note that when you leave out the z-coordinate,
LISP assumes it equals 0.0000.

The Angle from 0 Degrees
Other geometric functions of interest include finding the angle from 0 degrees (usually pointing
east) to the line defined by p1 and p2:
: (angle p1 p2)
5.88611

The result is returned in radians: 5.88611.

	 21  Programming with LISP    375

The Intersection of Two Lines
The intersection of two lines is determined by the inters function:
: (inters pt1 pt2 pt3 pt4)

Entity Snaps
In the following function, you are finding the midpoint of the line that starts at p1. You apply the
osnap function and specify the type of osnap; LISP returns the x,y,z-coordinates of the entity snap
point. The entity must actually exist.
: line
From point: !p1
To point: !p2
To point: (Press enter.)

: (osnap p1 "mid")
(4.4 4.4 5.5)

Here “mid” refers to the midpoint entity snap mode.

The other geometric functions include textbox (for finding the rectangular outline of a line of text)
and Polar, which returns a 3D point of a specified distance and angle.

CONDITIONAL FUNCTIONS
You could say that conditional functions are most important, because they define the existence of
a programming language. It is conditionals that allow a computer program to “think” and make
decisions. Conditional functions check if one value is less than, equal to, or greater than another
value. They check if something is true; or they repeat an action until something is false.

If you’re not sure if it’s a programming language or merely a macro language, check for conditionals.
Toolbar macros, for example, have no conditionals; they are not a programming language.

Here is an example of how conditional functions operate: if the floor-to-ceiling distance is greater
than eight feet, then draw 14 steps; else, draw 13 steps. Notice that there are two parts to the state-
ment: the if part is the true part; the else part is the false part. Do something if it is true; otherwise,
so something else if it is false.

Similar wording is used in LISP’s condition functions. Enter the following at the ‘:’ prompt:
: (if (> height 96) (setq steps 14) (setq steps 13))
13

Let’s break down this code to see how the if function compares with our statement:
(if 		 If
  (> 				  greater than
   height 			   floor-to-ceiling distance is
   96) 			   8 feet;
 				 Then
  (setq steps 14)		  use 14 steps.
				 Else
  (setq steps 13)		  use 13 steps.
)

376    Customizing BricsCAD V20

Other Conditionals
The if function is limited to evaluating just one conditional. The cond functions evaluate many
conditions. The repeat function executes a specific number of times, while the while function
executes code for as long as it is true.

STRING AND CONVERSION FUNCTIONS
You can manipulate strings (text consisting of one or more characters) in LISP, but to a lesser extent
than numbers. For example, you can find the length of a string as follows:
: (strlen “BricsCAD World”)
16

The strlen (short for STRing LENgth) function tells you that “BricsCAD World” has 16 characters
in it, counting the space. Notice how “BricsCAD World” is surrounded by quotation marks. That
tells LISP you are working with a string, not a variable.

If you were to type (strlen BricsCAD World), LISP tries to find the length of the strings held by
variables BricsCAD and World. For example:
: (setq BricsCAD "A software package")
"A software package"

: (setq world "the planet earth")
"the planet earth"

: (strlen BricsCAD world)
34

Joining Strings of Text
Other string functions change all characters to upper or lower case (strcase), returns part of a string
(substr), searches and replaces text in a string (subst), and join two strings together (strcat), as
follows:
: (strcat BricsCAD " used all over " world)
"A software package used all over the planet earth"

That’s how you create reports, such as “13 steps drawn”, by mixing variables and text.

Converting Between Text and Numbers
Related to string functions are the conversion functions, because some of them convert to and from
strings. For example, earlier I showed how to convert degrees to radians. That’s fine for decimal
degrees, like 45.3711 degrees. But how do you convert 45 degrees, 37 minutes and 11 seconds,
which BricsCAD represents as 45d37’11”? That’s where a conversion function like angtof (short
for ANGle TO Floating-point) comes in. It converts an angle string to real-number radians:
: (angtof "45d37'11\"" 1)
0.796214

Here we’ve supplied angtof with the angle in degrees-minutes-seconds format. However, LISP isn’t
smart enough to know, so we tell it by means of the mode number, 1 in this case.

	 21  Programming with LISP    377

This (and some other functions) use the following as mode codes:

Mode 	 Meaning 		 Example		

0 		 Decimal degrees 		 45.3711
1 		 Degrees-minutes-seconds 	 45d 37' 11"
2 		 Grad 			 100.1234
3 		 Radian 		 0.3964
4 		 Surveyor units 		 N 45d37'11" E

Notice the similarity between the mode numbers and the values of system variable AUnits — and
the modes used by Diesel. The coincidence is not accident. When you don’t know ahead of time
the current setting of units, you make use of this fact by specifying the mode number as a variable,
as follows:
: (angtof "45d37'11\"" (getvar "aunits"))
0.796214

Here we use getvar (short for GET VARiable), the LISP function that gets the value of a system
variable. We used getvar to get aunits, which holds the state of angular display as set by the Units
command.

Notice how the seconds indicator (") is handled: \". That’s so it doesn’t get confused with the
closing quote mark (") that indicates the end of the string.

Other Conversion Functions
Other conversion functions convert one unit of measurement into another (via the cvunit func-
tion and the default.unt file), an integer number into a string (itos), a character into its ASCII value
(ascii: for example, letter A into ASCII value 65), and translates (moves) a point from one coordinate
system to another (trans).

The default.unt file is found in the C:\Users\<login>\AppData\Roaming\Bricsys\BricsCAD\V20\
en_US\Support folder.

EXTERNAL COMMAND FUNCTIONS
“Powerful” often equates to “complicated,” yet one of LISP’s most powerful functions is its simplest
to understand: the command function. As its name suggests, command executes BricsCAD com-
mands from within LISP.

Think about it: this means that it is trivial to get LISP to draw a circle, place text, zoom a viewport,
whatever. Anything you type at the ‘:’ command prompt is available with the command function.
Let’s see how command works by drawing a circle. First, though, let’s recall how the Circle com-
mand operates:
: circle
2Point/3Point/RadTanTan/Arc/Multiple/<Center of circle>: 2,2
Diameter/<Radius>: D
Diameter of circle: 1.5

378    Customizing BricsCAD V20

Switching to the command function, you mimic what you type at the ‘:’ prompt, as follows. (This
is where Chapter 16’s practice in creating script files is handy.)
: (command "circle" "2,2" "D" "1.5")

Notice how all typed text is in quotation marks. After you enter that line of code, BricsCAD responds
by drawing the circle:
: circle
2Point/3Point/RadTanTan/Arc/Multiple/<Center of circle>: 2,2
Diameter/<Radius> <1.2857>: D
Diameter of circle <2.5714>: 1.5

Let’s look at one of the more complex commands to use with the command function, Text. When
we use the Text command, BricsCAD presents these prompts:
: text
Text: Style/Align/Fit/Center/Middle/Right/Justify/<Start point>: 5,10
Height of text <0.2000>: 1.5
Rotation angle of text <0>: (Press enter.)
Text: Tailoring BricsCAD

Converted to LISP-ese, this becomes:
: (command "text" "5,10" "1.5" "" "Tailoring BricsCAD")

And BricsCAD responds with:
: text
Text: Style/Align/Fit/Center/Middle/Right/Justify/<Start point>: 5,10
Height of text <1.5000>: 1.5
Rotation angle of text <0>:
Text: Tailoring BricsCAD

and then draws the text.

For the ‘Rotation angle:’ prompt, we simply pressed the enter key. Notice how that is dealt with
in the LISP function: “” — a pair of empty quotation marks.

You use the same “” to end commands that automatically repeat themselves, such as the Line com-
mand:
: (command "line" "1,2" "3,4" "")

When you don’t include that final "", then you leave BricsCAD hanging with a ‘End point:’ prompt
and your LISP routine fails.

By now it should be clear to you that you have to really know the prompt sequence of BricsCAD’s
more than 300 commands to work effectively with the command function. The easiest way to get
a handle on those is to purchase one of the “quick reference” books on the market, which list com-
mands in alphabetical order, along with the complete prompt sequence. And, as we see in a minute,
check that the quick reference book has a listing of all system variables, their default value, and the
range of permissible values.

	 21  Programming with LISP    379

Command Function Limitation
But the command function has a failing. Earlier, I said, “Anything you type at the ‘:’ command prompt
is available with the command function.” I now place emphasis on the word “type.” The command
function breaks down completely when it comes to dialog boxes. That’s right: any command that
uses a dialog box won’t work with the command function — nor, for that matter, with the macros
we looked at in previous chapters. It is for this reason that BricsCAD includes command-line ver-
sions of almost every (but not all) command.

Accessing System Variables
While you can use the command function to access system variables, LISP has a pair of more direct
functions: getvar and setvar. 	

Getvar gets the value of a system variable, while setvar changes (sets) the value.

For example, system variable SplFrame determines whether the frame of a spline polyline is dis-
played; by default, the value of SplFrame is 0: the frame is not displayed, as confirmed by getvar:
: (getvar "splframe")
0

To display the frame, change the value of SplFrame to 1 with setvar as follows:
: (setvar "splframe" 1)
1

We have, however, made a crass assumption: that the initial value of SplFrame is 0. Zero is the
default value, but not necessarily the value at the time that you run the LISP routine. How do we
know what the value of SplFrame is before we change it? We’ll answer that question later in this
chapter. Stay tuned.

GETXXX FUNCTIONS
It’s one thing to execute a command that draws a new entity, such as the circle and text we drew above
with the command function. It is trickier working with entities that already exist, such as moving
that circle or editing the text. That’s where the a group of functions known collectively as Getxxx
come into play. These functions get data from the screen. Some of the more useful ones include:

getpoint 		 Returns the x,y,z-coordinate of a picked point.
getangle	 	 Returns the angle in radians.
getstring	 	 Returns the text typed by the user.
getreal 		 Returns the value of a real number typed by the user.

Here’s how to use some of these with the Text command. Let’s redo the code with getstring so
that LISP prompts us for everything first, then executes the Text command. Here is the first line of
code, which prompts the user to input some text:
: (setq TxtStr (getstring T "What do you want to write? "))
What do you want to write?

380    Customizing BricsCAD V20

Notice that extra “T”; that’s a workaround that lets getstring accept a string of text with spaces.
When you leave out the T, then getstring accepts text up to the first space only, If you were to enter
“Tailoring BricsCAD”, you would end up with just “Tailoring” and no “BricsCAD.”

Also in the line of code above, the setq function stores the phrase, such as “Tailoring BricsCAD,” in
the variable TxtStr.

In the next line of code, we use the getreal function to ask for the height of text, which is a real
number (decimal) entered by the user.
: (setq TxtHt (getreal "How big do you want the letters? "))
How big do you want the letters? 2
2.0

Notice how getreal converts the 2 (an integer) to a real number, 2.0. The value is stored in vari-
able TxtHt.

Next, we use the getangle function to ask for the rotation angle of the text:
: (setq TxtAng (getangle "Tilt the text by how much? "))
Tilt the text by how much? 30
0.523599

Notice how getangle converts the 30 (a decimal degree) into radians, 0.523599. The value is stored
in variable TxtAng.

Then, we use the getpoint function to ask the user for the insertion point of the text:
: (setq TxtIns (getpoint "Where do you want the text to start? "))
Where do you want the text to start? (Pick a point.)
(27.8068 4.9825 0.0)

Notice how getpoint returns the x, y, and z values of the coordinate, even though z is zero. The user
can pick a point on the screen, or enter a coordinate pair (x,y) or triple (x,y,z).

Finally, we execute the Text command with the four variables:
: (command "text" TxtIns TxtHt TxtAng TxtStr)
text Justify/Style:
Height <1.5000>: 2.000000000000000
Rotation angle <0>: 0.523598775598299
Text: Tailoring BricsCAD
: nil

There! We’ve just customized the Text command to our liking. Not only did we change the prompts
that the user sees, but we used LISP to change the order of the prompts.

	 21  Programming with LISP    381

SELECTION SET FUNCTIONS
To work with more than one entity at a time, LISP has a group of functions for creating selection
sets. These all begin with “SS”, as in:

SsAdd 	 	 Adds entities to selection sets.
SsDel 	 	 Deletes entities from selection sets.
SsGetFirst 	 Reports the number of selected entities.
SsLength 	 Reports the number of entities in the selection set.
SsMemb 	 Checks if entities are part of a selection set.
SsName	 Identifies the nth entity in a selection set.
SsSetFirst	 Highlights objects in a selection set.	

BricsCAD’s Select command can deal only with one selection set at a time; in contrast, the LISP
SSxxx commands can work with up to 128 selection sets.

ENTITY MANIPULATION FUNCTIONS
The really powerful LISP functions are the ones that go right in and manipulate the drawing database.
Unlike the command function, which is powerful but simple, the entity manipulation functions are
powerful and complicated. Here’s a summary of what some of these are:

EntMake 	 Creates new entities.
EntGet 	 Gets the data that describes entities in drawings.
EntMod 	 Changes entities.
EntDel 	 Erases entities from the database.
TblObjName 	 Gets the names of entities in symbol tables.

The “Ent” prefix is short for entity. The “symbol table” refers to the part of the drawing database
that stores the names of layers, text styles, and other named entities in the drawing.

To create and manipulate entities, these LISP functions work with a variant on the DXF format,
known as “dotted pairs.” For example, to work with a layer named RightOfWay, you employ the
following format:
 "2 . RightOfWay"

The quotation marks indicate the start and end of the data, while the dot in the middle separates
the two values: The 2 is the DXF code for layer names, and RightOfWay is the name of the layer.
You can see that to work with these entity manipulation functions, you need a good grasp of the
DXF format.

ADVANCED LISP FUNCTIONS
There is a whole host of LISP functions that you may never use in your BricsCAD programming
career. For example, there are LISP functions for controlling the memory, such as gc (garbage
collection) and mem (memory status). Another set of LISP functions are strictly for loading and
displaying dialog boxes, such as load_dialog and new_dialog.

382    Customizing BricsCAD V20

Writing a Simple LISP Program

 In this section, you learn the first steps in writing a LISP routine of your own.

WHY WRITE A PROGRAM?
If you are like many CAD users, you are busy creating drawings, and you have no time to learn how
to write software programs. No doubt, you may be wondering, “Why bother learning a programming
language?” In some ways, it’s like being back again in school. Sitting in the classroom sometimes
seems like a waste of time.

But the things you learn now make life easier later. Learning some LISP programming now means
you’ll feel really good whipping off a few lines of code to let LISP perform tedious tasks for you.
The nice thing about LISP is that you can program it on the fly. And you can use it for really simple
but tedious tasks.

Here’s the example we’ll use for this tutorial:

The Id Command
BricsCAD has the Id command. When you pick a point on the screen, Id reports the 3D x,y,z- coor-
dinates of the point. Problem is, Id reports the value in the command prompt area, like this:
: id
Select a point to identify coordinates: (Pick a point.)
X = 8.9227 Y = 6.5907 Z = 0.0000

Wouldn’t it be great if you could change Id so that it places the coordinates in the drawing, next
to the pick point? That would let you label x,y-coordinates and z-elevations over a site plan. With
LISP, you can.

THE PLAN OF ATTACK
Before you write any LISP code, you need to figure out how you’re going to get those x,y,z-coordinates
off the command prompt area, and into the drawing. Recognize that there are two parts to solving
the problem:

	 Part 1. Obtain the coordinates from the drawing, probably by picking a point.

	 Part 2. Place the coordinates as text in the drawing.

Obtaining the Coordinates
LISP provides several ways to get the coordinates of a picked point. Browsing through the LISP
Programming Language Reference, you learn you could:

ÐÐ Use the Id command with the command function, as in (command “ID”).

ÐÐ Use the LastPoint system variable with the getvar function, as in (getvar “lastpoint”).

ÐÐ Use the getpoint function, as in (getpoint “Pick a point: “)

	 21  Programming with LISP    383

It would be a useful lesson to use each of the three, and then see what happens. By experimenting,
you make mistakes, and then learn from the mistakes.

1.	 Start BricsCAD, load a drawing, and switch to the Prompt History window with F2. At the ‘:’ prompt, enter:
	 : (command "ID")

	 Here you are executing an BricsCAD command (Id) from within a LISP routine. The command function lets

you use any BricsCAD command in LISP. The BricsCAD command is in quotation marks “ID” because the com-

mand is a string (programmer-talk for “text”). Just as before, BricsCAD prompts you for the point.

2.	 In response to the LISP routine’s prompt, pick a point:
	 Select a point to identify coordinates: (Pick a point.)
	 X = 8.9227 Y = 6.5907 Z = 0.0000

3.	 Unknown to you, BricsCAD always stores the x,y,z-coordinates of the last-picked point in a system variable

called LastPoint. So, you should copy the coordinates from LastPoint to a variable of your own making. You

need to do this because the coordinates in LastPoint are overwritten with the next use of a command that

makes use of a picked point.

	 Recall from in this chapter that the setq function stores values in variables. Make use of it now. At the ‘:’

prompt, enter:
	 : (setq xyz (getvar "LastPoint"))
	 (8.9227 6.5907 0.0000)

•	 Xyz is the name of the variable in which you store the x,y,z-coordinate.

•	 Getvar is the name of the LISP function that retrieves the value stored in a system variable.

•	 And “LastPoint” is the name of the system variable; it is surrounded by quotation marks because it is a

system variable name (a string).

	 After entering the LISP function, BricsCAD returns the value it stored in variable xyz, such as (8.9227 6.5907

0.0000) — your result will be different. Notice how the coordinates are surrounded by parenthesis. This is

called a list, for which LISP is famous (indeed, LISP is short for “list processing”). Spaces separate the num-

bers, which are the x, y, and z-coordinates, respectively:
	 x 	 8.9227
	 y 	 6.5907
	 z	 0.0000

	 BricsCAD always stores the values in the order of x, y, and z. You will never find the z- coordinate first or the

x-coordinate last.

So, we’ve now solved the first problem in one manner. We obtained the coordinates from the
drawing, and then stored them in a variable. We did mention a third LISP function we could use,
getpoint. Programmers prefer getpoint because it is more efficient than the Id-LastPoint combo
we used above.

Type the following to see that it works exactly the same, the difference being that we provide the
prompt text (“Point: ”):
: (setq xyz (getpoint "Point: "))
Point: (Pick a point.)
(8.9227 6.5907 0.0000)

384    Customizing BricsCAD V20

As before, we use the setq function to store the value of the coordinates in variable xyz. The get-
point function waits for you to pick a point on the screen. The “Point: “ is called a prompt, which
tells the user what the program is expecting the user to do. We could just as easily have written
anything, like:
: (setq xyz (getpoint "Press the mouse button: "))
Press the mouse button: (Pick a point.)
(8.9227 6.5907 0.0000)

Or, we could have no prompt at all, as follows:
: (setq xyz (getpoint))
(Pick a point.)
(8.9227 6.5907 0.0000)

That’s right. No prompt. Just a silent BricsCAD waiting patiently for the right thing to happen ...
and the user puzzled at why nothing is happening. A lack of communication, you might say. That’s
why prompts are important.

We’ve now seen a couple of approaches that solve the same problem in different ways. With the
x,y,z-coordinates safely stored in a variable, let’s tackle the second problem

PLACING THE TEXT
To place text in the drawing, we can use only the command function in conjunction with the Text
command. I suppose the MText command might work, but you want to place one line of text, and
the Text command is excellent for that. The Text command is, however, trickier than the Id com-
mand. It has a minimum of four prompts that your LISP routine must answer:
: text
Text: Style/Align/Fit/Center/Middle/Right/Justify/<Start point>:
Height of text <2>:
Rotation angle of text <0>:
Text:

Start point: a pair of numbers, specifically an x,y-coordinate.

Height of text: a number to makes the text legible.

Rotation angle of text: a number, probably 0 degrees.

Text: the string, in our case the x,y,z-coordinates.

Let’s construct a LISP function for placing the x,y,z-coordinates as text:
(command "text" xyz 200 0 xyz)

(command is the command function.

“text” is the BricsCAD Text command being executed.

xyz variable stores the starting point for the text.

200 is the height of the text. Change this number to something convenient for your drawings.

0 is the rotation angle of the text.

xyz means you’re lucky: the Text command accepts numbers as text.

) and remember: one closing parenthesis for every opening parenthesis.

	 21  Programming with LISP    385

Try this out at the ‘:’ prompt:
: (command “text” xyz 200 0 xyz)
Text: Style/Align/Fit/Center/Middle/Right/Justify/<Start point>:
Height of text: 200
Rotation angle of text: 0
Text: 2958.348773815669,5740.821183398367
:

BricsCAD runs through the Text command, inserting the responses for its prompts, then placing
the coordinates as text. We’ve solved the second part of the problem.

PUTTING IT TOGETHER
Let’s put together the two solutions to your problem:
(setq xyz (getpoint "Pick point: "))
(command "text" xyz 200 0 xyz)

There you have it: a full-fledged LISP program. Well, not quite. It’s a pain to retype those two lines
each time you want to label a point. In the next section, you find out how to save the code as a .lsp
file on disk. You’ll also dress up the code.

Adding to the Simple LISP Program

There you have it: a full-fledged LISP program. Well, not quite. What you have is the algorithm — the
core of every computer program that performs the actual work. What is lacking is most of a user
interface — the part that makes it easier for any user to employ the program.

All you have for a user interface is part of the first line that prompts, “Select point to identify co-
ordinates: ”. There’s a lot of user interface problems with this little program. How many can you
think of? Here’s a list of problems I came up with:

ÐÐ It’s a pain to retype those two lines each time you want to label a point — you need to give the program a name ...

ÐÐ ... and you need to save it on disk so that you don’t need to retype the code with each new BricsCAD session...

ÐÐ ... and, if you use this LISP program a lot, then you should have a way of having it load automatically.

ÐÐ The x,y,z-coordinates are printed to eight decimal places; for most users, that’s w-a-y too many.

ÐÐ You may want to control the layer that the text is placed on.

ÐÐ You may want a specific text style.

ÐÐ Certainly, you would like some control over the size and orientation of the text.

ÐÐ Here’s an orthogonal idea: store the x,y,z-coordinates to a file on disk — just in case you ever want to reuse
the data.

386    Customizing BricsCAD V20

CONQUERING FEATURE BLOAT
“Okay,” you may be thinking, “I can agree that these are mostly desirable improvements. Go right
ahead, Mr. Grabowski: Show me how to add them in.”

But, wait a minute! When you’re not familiar with LISP, you may not realize how a user interface
adds a tremendous amount of code, which mean more bugs and more debugging. (If you are famil-
iar with programming, then you know how quickly a simple program fills up with feature-bloat.)
While all those added features sound desirable, they may make the program less desirable. Can you
image how irritated you’d get if you had to answer the questions about decimal places, text font,
text size, text orientation, layer name, filename — each time you wanted to label a single point?

Take a second look at the wish list above. Check off features important to you, and then cross out
those you could live without.

Wishlist Item #1: Naming the Program
To give the program a name, surround the code with the defun function, and give it a name, as
follows:
(defun c:label (/ xyz)
(setq xyz (getpoint "Pick point: "))
(command “text” xyz 200 0 xyz)
)

Let’s take a look at what’s been added, piece by piece:

Defining the Function - defun
(defun defines the name of the function. In LISP, the terms function, program, and routine are used
interchangeably (defun is short for “define function.”)

Naming the Function - C:
c:label is the name of the function. I decided to call this program “Label”; you can call it anything
you like, so long as the name does not conflict with that of any built-in LISP function or other user-
defined function. The c: prefix make this LISP routine appear like an BricsCAD command.

To run the Label program, all you need do is type “label” at the ‘:’ prompt, like this:
: label
Select a point to identify coordinates: (Pick a point.)

When the c: prefix is missing, however, then you have to run the program like a LISP function,
complete with the parentheses, as follows:
: (label)
Select a point to identify coordinates: (Pick a point.)

	 21  Programming with LISP    387

Local and Global Variables - /
(/ xyz) declares the names of input and local variables; the slash separates the two:

	 Input variables — feed data to LISP routines; the names of input variables appear before the slash.

	 Local variables — used only within programs; the names of local variables appear after the slash.

In this program, xyz is the name of the variable that is used strictly within the program. If variables
are not declared local, they become global. The value of a global variable can be accessed by any
LISP function loaded into BricsCAD.

The benefit to declaring variables as local is that BricsCAD automatically frees up the memory used
by the variable when the LISP program ends; the drawback is that the value is lost, making debug-
ging harder. For this reason, otherwise-local variables are kept global until the program is debugged.

And the) closing parenthesis balances the opening parenthesis at the beginning of the program.

Wishlist Item #2: Saving the Program
By saving the program to a file on disk, you avoid retyping the code with each new BricsCAD ses-
sion. You do this, as follows:

1.	 Start a text editor (the Notepad supplied with Windows or Text Edit with Linux and Mac are good).

2.	 Type the code shown:
	 (defun c:label (/ xyz)
	  (setq xyz (getpoint "Pick point: "))
	  (command “text” xyz 200 0 xyz)
)

	 I indented the code in the middle to make it stand out from the defun line and the closing parenthesis. This

is standard among programmers; the indents make it easier to read code. You can use a pair of spaces or the

tab key because LISP doesn’t care.

3. 	 Save the file with the name label.lsp in BricsCAD’s folder.

Wishlist Item #3: Automatically Loading the Program
To load the program into BricsCAD, type the following:
: (load "label")

If BricsCAD cannot find the LISP program, then you have to specify the path. Assuming you saved
label.lsp in the \cad\support folder, you would enter:
: (load "\\cad\\support\\label")

Now try using the point labelling routine, as follows:
: label
Select a point to identify coordinates: (Pick a point.)

TIP  BricsCAD provides a way to automatically load LISP programs. When BricsCAD starts up, it looks for a
file called icad.lsp. BricsCAD automatically loads the names of LISP programs listed in the file.

388    Customizing BricsCAD V20

Adding label.lsp to icad.lsp is easy. Open the icad.lsp file with a text editor (if the file does not exist,
then start a new file called acad.lsp and store it in the \BricsCAD folder). Add the name of the program:
(load "label.lsp")

Save the icad.lsp file. Start BricsCAD and it should load label automatically.

Wishlist #4: Using Car and Cdr
The x,y,z-coordinates are printed to eight decimal places — that’s too many. There are two solutions.
One is to ask the user the number of decimal places, as shown by the following code fragment:
: (setq uprec (getint "Label precision: "))
Label precision: 1
1

Or steal the value stored in system variable LUPrec — the precision specified by the user through
the Units command — under the (not necessarily true) assumption that the user want consistent
units. The code to do this is as follows:
(setq uprec (getvar "LUPREC"))

That was the easy part. The tough part is applying the precision to the x,y,z-coordinates, which
takes three steps: (1) pick apart the coordinate triplet; (2) apply the precision factor; and (3) join
together the coordinates. Here’s how:

1.	 Open label.lsp in NotePad or other text editor. Remove / xyz from the code. This makes the variable “global,”

so that you can check its value at BricsCAD’s ‘:’ prompt. The code should look like this:
	 (defun c:label ()
	  (setq xyz (getpoint "Pick point: "))
	  (command “text” xyz 200 0 xyz)
)

2.	 Save, and then load label.lsp into BricsCAD.

3.	 Run label.lsp, picking any point on the screen. If you don’t see the coordinates printed on the screen, use the

Zoom Extents command.

4.	 At the ‘:’ prompt, enter the following:
	 : !xyz
	 (6.10049 8.14595 10.0)

	 The exclamation mark forces BricsCAD to print the value of variable xyz, which holds the x,y,z-coordinates.

Your results will differ, depending on where you picked.

5.	 LISP has several functions for picking apart a list. Here you use the car and cdr functions, and combinations

thereof. The car function extracts the first item (the x-coordinate) from a list. Try it now:
	 : (car xyz)
	 6.10049

6.	 The cdr function is the compliment to car. It removes the first item from the list, and then gives you what’s

left over:
	 : (cdr xyz)
	 (8.14595 10.0)

7.	 In addition to car and cdr, LISP allows me to combine the “a” and “d” in several ways to extract other items

in the list. To extract the y-coordinate, use cadr, as follows:
	 : (cadr xyz)
	 8.14595

	 21  Programming with LISP    389

8.	 And to extract the z-coordinate, use caddr, as follows:
	 : (caddr xyz)
	 8.14595

9.	 I now have a way to extract the x-coordinate, the y-coordinate, and the z-coordinate from variable xyz. I’ll

store them in their own variables, as follows:
	 : (setq ptx (car xyz)
	 Missing: 1) > pty (cadr xyz)

	 Missing: 1) > ptz (caddr xyz)
	 Missing: 1) >)

	 You use variable PtX to store the x-coordinate, PtY for the y-coordinate, and so on. In addition, a form of LISP

shorthand was used in the code above that allows you apply the setq function to several variables. Recall the

reason for BricsCAD’s ‘Missing: 1) >’ prompt: it reminds you that a closing parenthesis is missing.

10.	 Now that the three coordinates are separated, you can finally reduce the number of decimal places. There

are a couple of ways to do this. Use the rtos function, because it does two things at once: (1) changes the

number of decimal places to any number between 0 and 8; and (2) converts the real number into a string.

Why a string? You’ll see later. For now, here is the rtos function at work:
	 : (rtos ptx 2 uprec)
	 "6.1"

	 The rtos function uses three parameters: ptx, 2, and uprec.

PtX 	Name of the variable holding the real number.

2 	 Type of conversion, decimal in this case. The number 2 is based on system variable LUnits, which defines
five modes of units:

Mode	 Units		

1		 Scientific
2		 Decimal
3		 Engineering
4		 Architectural
5		 Fractional

UPrec Name of the variable holding the precision (the code for that is at the beginning of this section). This

varies, depending on the type of units. For example, a value of 2 for decimal means two decimal places;

a 2 for architectural means quarter-inch.

	 Assuming, then, that the precision in UPrec is 1, the rtos function in the code fragment above reduces

6.10049 to 6.1.

11. 	 Truncate, and preserve the values of x, y, and z three times, as follows:
	 : (setq ptx (rtos ptx 2 uprec)
	 1> pty (rtos pty 2 uprec)
	 1> ptz (rtos ptz 2 uprec)
	 1>)

	 Notice that you can set a variable equal to itself: PtX holds the new value of the x-coordinate after rtos gets

finished processing the earlier value stored in PtX. Reusing a variable name like this helps conserve memory.

12. 	 With the coordinates truncated, you now have to string (pardon the pun) them together with the strcat func-

tion, short for string concatenation. Try it now:
	 : (strcat ptx pty ptz)
	 "6.18.110.0"

390    Customizing BricsCAD V20

13. 	 Oops! Not quite the look you may have been hoping for. Since LISP can’t know when you want spaces, it pro-

vides none. You have to insert them yourself using strcat, one of the most useful LISP functions. It lets you

create a string that contains text and variables, like this:
	 : (setq xyz (strcat ptx ", " pty ", " ptz))
	 "6.1, 8.1, 10.0"

	 That’s more like it!

14.	 Back to the text editor. Add in the code you developed here, shown in boldface, and with LISP functions in

cyan:
	 (defun c:label (/ xyz xyz1 uprec ptx pty ptz)
	  (setq uprec (getint "Label precision: "))
	  (setq xyz (getpoint "Pick point: "))
	  (setq ptx (car xyz)
  		 pty (cadr xyz)
	  	 ptz (caddr xyz)
	 )

	  (setq ptx (rtos ptx 2 uprec)
  		 pty (rtos pty 2 uprec)
	  	 ptz (rtos ptz 2 uprec)
	 )

	  (setq xyz1 (strcat ptx ", " pty ", " ptz))
	  (command "text" xyz 200 0 xyz1)
)

	 Notice that all variables are local. Notice, too, the change to variable xyz in the last couple of lines: you don’t

want the text placed at the rounded-off coordinates, so use xyz1 as the variable holding the text string.

15. 	 Finally, you should add comments to your code to remind you what it does when you look at the code several

months from now. Semicolons indicate the start of comments:
; Label.Lsp labels a picked point with its x,y,z-coordinates.
; by Ralph Grabowski, 25 February, 1996.
(defun c:label (/ xyz xyz1 uprec ptx pty ptz)

  ; Ask user for the number of decimal places:
  (setq uprec (getint "Label precision: "))

  ; Ask the user to pick a point in the drawing:
  (setq xyz (getpoint "Pick point: "))

  ; Separate 3D point into individual x,y,z-values:
  (setq ptx (car xyz)
   pty (cadr xyz)
   ptz (caddr xyz)
 )

  ; Truncate values:
  (setq ptx (rtos ptx 2 uprec)
   pty (rtos pty 2 uprec)
   ptz (rtos ptz 2 uprec)
 )

  ; Recombine individual values into a 3D point:
  (setq xyz1 (strcat ptx ", " pty ", " ptz))

  ; Place text:
  (command "text" xyz 200 0 xyz1)

)

16.	 Save the file as label.lsp, then load the LISP routine into BricsCAD with:
	 : (load "label")
	 "C:LABEL"

	 21  Programming with LISP    391

17. 	 Run the routine, and respond to the prompts:
	 : label
	 Label precision: 1
	 Pick point: (Pick a point.)
	 text Justify.../<Start point>:
	 Height of text <200.0000>: 200
	 Rotation angle of text <0>: 0
	 Text: 5012.3, 773.2, 0.0
	 :

Saving Data to Files

In the previous tutorial, we begin to worry about user interface enhancements. What started out
as two lines of code has now bulged out into 23. In this tutorial, we learn how to fight feature bloat
(more later), and add the ability to save data to a file.

A reader wrote me with this wish list item: “The LISP file comes in very handy with some of the
programs I use, but I would like to be able to save the data collected on the x,y,z-coordinates in a
text file.”

Saving the data to file is easily done with the open, write-line, and close functions. Let’s take a
look at how to do this. Dealing with files in LISP is simpler than for most programming languages
because LISP has very weak file access functions. All it can do is read and write ASCII files in se-
quential order; LISP cannot deal with binary files nor can it access data in random order.

THE THREE STEPS
There are three steps in writing data to a file:

	 Step 1.  Open the file.

	 Step 2.  Write the data to the file.

	 Step 3.  Close the file.

Step 1: Open the File
LISP has the open function for opening files. The function lets you open files for one of three pur-
poses: (1) read data from the file; (2) write data to the file; or (3) append data to the file. You must
choose one of these at a time; LISP cannot do all three at once.

In all cases, LISP takes care of creating the file if it does not already exist. Reading data is easy enough
to understand, but what’s the difference between “writing” and “appending” data?

ÐÐ When I ask BricsCAD to open a file to write, all existing data in that file is erased, and then the new data is added.

ÐÐ When I ask BricsCAD to open a file to append, the new data is added to the end of the existing data.

For our purpose, we want to keep adding data to the file, so choose append mode. The LISP code
looks like this:
(setq FIL (open "xyzdata.txt" "a"))

392    Customizing BricsCAD V20

Here you are setting something (through setq) equal to a variable named FIL. What is it? In pretty
much all programming languages, we don’t deal with the filename directly, but instead deal with
a file descriptor. This is a name (some sequence of letters and numbers) to which the operating
system assigns the filename. Now that you have the file descriptor stored in variable FIL, you work
with FIL, not the filename, which I have decided to call xyzdata.txt.

The final “a” tells LISP you want to open xyzdata.txt for appending data. The options for the open
function are:

Option		 Comment					

"a"	 	 Appends data to end of file.
"w"		 Writes data to file (erase existing data).
"r"		 Reads data from file.

Step 2: Write Data to the File
To write data to files, use the write-line function. This function writes one line of data at a time.
(Another function, the write function, writes single characters to files.) The code looks like this:
(write-line xyz1 fil)

You cannot, however, just write raw data to the file because it would look like three decimal points
and a lot of digits, like this:
8.15483.27520.0000

Most software is able to read data with commas separating numbers, like this:
8.1548, 3.2752, 0.0000

That includes spreadsheets, database programs, and even some word processing software. I tell
these programs that when they read the data, they should consider the comma to be a separator
and not a comma. In that way, the spreadsheet program places each number in its own cell. With
each number in its own cell, I can manipulate the data. For this reason, you need code that formats
the data.

Fortunately, you’ve done that already. Last tutorial, you used the strcat function along with the cdr,
cadr, and caddr functions to separate the x, y, and z components of the coordinate triplet. So you
can reuse the code, which looks like this:
(setq ptx (car xyz)
 	 pty (cadr xyz)
 	 ptz (caddr xyz)
)
(setq xyz1 (strcat ptx ", " pty ", " ptz))

The strcat function places the commas between the coordinate values.

Step 3: Close the File
Finally, for good housekeeping purposes, close the file. BricsCAD will automatically close the file for
you if you forget, but a good programmers clean up after themselves. Closing the file is as simple as:
(close fil)

	 21  Programming with LISP    393

PUTTING IT TOGETHER
Add the code for opening, formatting, writing, and closing to the lable.lsp program:
(defun c:label (/ xyz xyz1 uprec ptx pty ptz)
  (setq uprec (getint “Label precision: “))
  (setq xyz (getpoint “Pick point: “))
  (setq ptx (car xyz)
   pty (cadr xyz)
   ptz (caddr xyz)
 )

  ; Format the x,y,z coordinates:
  (setq ptx (rtos ptx 2 uprec)
   pty (rtos pty 2 uprec)
   ptz (rtos ptz 2 uprec)
 )

; Add commas between the three coordinates:
  (setq xyz1 (strcat ptx “, “ pty “, “ ptz))

  ; Write coordinates to the drawing:
  (command “text” xyz 200 0 xyz1)

  ; Open the data file for appending:
  (setq fil (open “xyzdata.txt” “a”))

  ; Write the line of data to the file:
  (write-line xyz1 fil)

  ; Close the file:
  (close fil)

)

Using a text editor, such as Notepad, make the additions (shown in boldface above) to your
copy of lable.lsp. Load it into BricsCAD with the load function:
: (load "label")

And run the program by entering Label at the ‘:’ prompt:
: label
Label precision: 4
Pick point: (Pick a point.)

As you pick points on the screen, the routine labels the picked points, but also writes the 3D point
data to file. After a while, this is what the data file looks something like this:
8.1548, 3.2752, 0.0000
7.0856, 4.4883, 0.0000
6.4295, 5.6528, 0.0000
5.5303, 6.7688, 0.0000
5.4331, 8.3215, 0.0000

Wishlist #5: Layers
Let’s take a moment to revisit the wishlist. One wishlist item is to control the layer on which the
text is placed. There are two ways to approach this wishlist item:

•	 The no-code method is to set the layer before starting the LISP function.

•	 The LISP-code version is to ask the user for the name of the layer, then use the setvar function to set system

variable CLayer (much easier than using the Layer command), as follows:

	 (setq lname (getstring "Label layer: "))
	 (setvar "CLAYER" lname)

394    Customizing BricsCAD V20

Add those two line before the line with the “Pick point” prompt.

Wishlist #6: Text Style
To specify the text style, there are the same two methods. The no-code method is to simply set the
text style before starting the routine. Otherwise, you can write LISP code similar to set the style
with the setvar command, as follows:
(setq tsname (getstring "Label text style: "))
(setvar "TEXTSTYLE" tsname)

Once again, add those two line before the line with the “Pick point” prompt.

By now, you may be noticing that your program is starting to look big. This is called “feature bloat.”
More features, especially in the area of user interface, makes software grow far beyond the size of
its basic algorithm.

TIPS IN USING LISP
To conclude this chapter, here are tips for helping out when you write your LISP functions.

Tip #1. Use an ASCII Text Editor.
LISP code must be written in plain ASCII text — no special characters and no formatting (like bol-
face or color) of the sort that word processors add to the file. When you write LISP code with, say,
Word, then save as a .doc-format file (the default), BricsCAD will simply refuse to load the LISP file,
even when the file extension is .lsp.

In an increasingly Window-ized world, it is harder to find a true ASCII text editor. There is one,
however, supplied free by Microsoft with Windows called Notepad, which you’ll find in the
\windows folder. Do not use Write or WordPad supplied with Windows. While both of these have
an option to save in ASCII, you’re bound to forget sometimes and end up frustrated. Linux provides
the excellent Text Edit (aka gedit) text editor, while Mac has TextEdit.

Almost any other word processor has an option to save text in plain ASCII, but not by default. Word
processors have a number of different terms for what I mean by “pure ASCII format.” Word calls it
“Text Only”; WordPerfect calls it “DOS Text”; WordPad calls it “Text Document”; and Atlantis calls
it “Text Files.” You get the idea.

Tip #2: Loading LSP Code into BricsCAD
To load the LISP code into BricsCAD, you use the load function. Here’s an example where points.
lsp is the name of the LISP routine:
: (load "points")

You don’t need to type the .lsp extension.

	 21  Programming with LISP    395

When BricsCAD cannot find points.lsp, you need to specify the folder name by using either a forward
slash or double backslashes — your choice:
: (load "\\BricsCAD\\points")

After you’ve typed this a few times, you’ll find it gets tedious. To solve the problem, write a one-line
LISP routine that reduces the keystrokes, like this:
: (defun c:x () (load "points"))

Now anytime you need to load the points.lsp routine, you just type X and press Enter, as follows:
: x

Under Windows, you could also just drag the .lsp file from the File Manager into BricsCAD. Note
that the code moves one way: from the text editor to BricsCAD; you cannot drag the code from
BricsCAD back to the text editor.

Tip #3: Toggling System Variables
One problem in programming is: How to change a value when you don’t know what the value is?
In BricsCAD, you come across this problem with system variables, many of which are toggles. A
toggle system variable has a value of 0 or 1, indicating that the value is either off (0) or on (1).
For example, system variable SplFrame is by default 0: when turned off, splined polylines do not
display their frame.

No programmer ever assumes that the value of SplFrame is going to be zero just because that’s its
default value. In the case of toggle system variables, there two solutions:

	 (1) Employ the if function to see if the value is 0 or 1.

	 (2) Subtract 1, and take the absolute value.

Tip #4: Be Neat and Tidy.
Remember, your mother told you to always pick up your things. This problem of setting system
variables applies universally. When your LISP routine changes values of system variables, it must
always set them back to the way they were before the routine began running.

Many programmers write a set of generic functions that save the current settings at the beginning
of the routine, carries out the changes, and then restores the saved values at the end of the routine.
Here’s a code fragment that shows this, where the original value of SplFrame is stored in variable
SplVar using getvar, and then restored with setvar:
(setq splvar (getvar "splframe"))
...
(setvar "splframe" splvar)

396    Customizing BricsCAD V20

Tip #5: UPPER vs. lowercase
In (almost) all cases, LISP doesn’t care if you use UPPERCASE or lowercase for writing the code.
For legibility, there are some conventions:

ÐÐ LISP function names in all lowercase.

ÐÐ Your function names in Mixed Case.

ÐÐ BricsCAD variables and command names in all UPPERCASE.

As I said, LISP doesn’t care, and converts everything into uppercase in any case. It also strips out all
comments, excess white space, tabs, and return characters. The exception is text in quote marks,
such as prompts, which are left as is.

There are two exception where LISP does care: when you are working with escape codes and the
letter T.

Escape codes are used in text strings, and must remain lowercase. For example, \e is the escape
character (equivalent to ASCII 27) and \t is the tab character. Note that they use backslashes; it is
for this reason that you cannot use the backslash for separating folders names back in Tip #2. LISP
would think you were typing an escape code.

And some functions use the letter T as a flag. It must remain uppercase.

Tip # 6: Quotation Marks as Quotation Marks
As we have seen, LISP uses quotation marks (") for strings. Thus, you cannot use a quotation mark
as for displaying quotation marks and inches, such as displaying 25 inches as 25".

The workaround is to use the escape codes mentioned above in Tip #5, specifically the octal code
equivalent for the ASCII character for the quotation mark. Sound complicated? It is. But all you need
to know is 042. Here’s how it works:

First, assign the strings to variables, as follows:
(setq disttxt "The length is ")
(setq distval 25)
(setq qumark "\042")

Notice how I assigned octal 042 to variable qumark. The backslash tells LISP the numbers follow-
ing are in octal. Octal, by the way, is half of hexadecimal: 0 1 2 3 4 5 6 7 10 11 12 ... 16 17 20 21 ...

Then concatenate the three strings together with the strcat function:
(strcat distxt distval qumark)

To produce the prompt:
The length is 25"

	 21  Programming with LISP    397

Tip #7: Tabs and Quotation Marks
Vijay Katkar is writing code for a dialog box with a list box. He told me, “I want to display strings in
it — just like the dialog box displayed by the Layer command. I am able to concatenate the values
and print the strings but there is no vertical alignment, since the strings are of different lengths. I
tried using the tab metacharacter (\t) in the string but it prints the literal ‘\t’ in the list box. Is there
any way I can get around this problem?”

I recall a similar problem: How to display quotation marks or the inches symbol within a text string?
For example, I have a line of LISP code that I want to print out as:
The diameter is 2.54"

Normally, I cannot use the quotation (") character in a string. LISP uses the quotation as its string
delimiter to mark the beginning and ending of the string. In the following line of code:
(prompt "The diameter is 2.54"")

LISP sees the first quotation mark as the start of the string, the second quotation as the end of the
string, and the third quotation mark as an error. The solution is the \nnn metacharacter. This lets me
insert any ASCII character, including special characters, such as tab, escape, and quotation marks.
The workaround here is to use the ASCII code for the quotation mark, \042, like this:
(prompt "The diameter is 2.54\042")

Similarly, Vijay needs to use the \009 metacharacter to space the text in his dialog box. And, in fact,
that worked: “According to what you had told me, I used the same and it worked.”

398    Customizing BricsCAD V20

Notes

Designing Dialog Boxes
with DCL

DCL allows programmers to create custom dialog boxes for LISP routines. Short for "dialog
control language," DCL was added to BricsCAD in V8 for compatibility with AutoCAD.

DCL is a structured language used to describe the elements (called "tiles") that make up dialog
boxes. Tiles includes edit boxes, list boxes, radio buttons, image tiles, and title bars. Each of these
has one or more attributes, such as its position, background color, and the action it performs.

CHAPTER SUMMARY

The following topics are covered in this chapter:

•	 Learning the history of DCL

•	 Finding out the makeup of dialog boxes

•	 Coding your first dialog box

•	 Using LISP code to load and run dialog boxes

•	 Finding examples of DCL coding

•	 Debugging DCL

•	 Discovering additional DCL learning resources

CHAPTER 22

400    Customizing BricsCAD V20

A QUICK HISTORY OF DCL

Autodesk first added DCL (short for "dialog control language") as an undocumented feature to AutoCAD Release 11
for Windows. It was designed to for creating platform-independent dialog boxes. At that time, Autodesk produced ver-
sions of AutoCAD for "every viable engineering platform," which included DOS, Windows, Unix, Macintosh, and OS/2,
and DCL was part of a project code-named "Proteus," whose aim was to make AutoCAD work and look identical on
every operating system.

As the figures below show, the project was a success. First, here is AutoCAD Release 11’s Drawing Aids dialog box
running on DOS:

And here is the same dialog box in the Windows version of AutoCAD Release 11:

Notice how similar the DOS and Windows dialog boxes look. (The Drawing Aids dialog box is now known as the Op-
tions dialog box.)

By Release 14, however, Proteus became meaningless, because Autodesk chose to support only the Windows operating
system. But DCL continues hangs around as the only way to create dialog boxes with LISP, and Bricsys makes good use
of DCL for its support of Linux, MacOS, and Windows.

	 22  Designing Dialog Boxes with DCL    401

Applications written in LISP, SDS, and DRx can make use of DCL for dialog boxes. Menu and toolbar
macros can too, when they link to LISP routines that call the DCL code. (VBA does not use DCL,
because it has its own dialog construction environment.)

Bricsys provides no programming environment to help you create DCL files — it’s hand coding all
the way. That means a text editor such as NotePad in Windows and Text Edit in Linux or Mac will
be your DCL programming environment. Some third-party developers have created DCL develop-
ment tools.

When you want a LISP routine to display a dialog box, you need to write two pieces of code:

ÐÐ Code in a .dcl file that defines the dialog box and the functions of its tiles.

ÐÐ Code in the .lsp file that loads the .dcl file, and then activates the tiles.

Working with dialog boxes always involves a pair of files, .dcl and .lsp, with the LISP code control-
ling the dialog box code.

A drawback to DCL is that it cannot create self-modify dialog boxes, such as ones that add or remove
buttons. It can, however, dynamically change the contents of droplists and such.

Label

Label

Centered tile

Button

Popup list

Edit box

Toggle

Ok-Cancel

Default

Invisible
tile

Row

Boxed column

Elements of a dialog box

402    Customizing BricsCAD V20

What Dialog Boxes Are Made Of

Dialog boxes can consist of many elements, such as radio buttons, sliders, images, tabs,
and check boxes. These elements are called "tiles." DCL allows you to create many differ-
ent types of elements, but it does not have tiles for every element found in today’s dialog
boxes. That’s because DCL hasn’t been upgraded since it was introduced some 20 years
ago. (Those elements not possible with DCL can be created through VBA.)

The figure below illustrates many of the dialog box elements that are possible with DCL,
along with some names of specific DCL tiles.

Most tiles are visible, but some are invisible, such as the row and column tiles highlighted
in the figure above by blue rectangles:

HOW DCL OPERATES
The two pieces of code that are required to make dialog boxes operate are (a) DCL code
that specifies the layout of tiles and their attributes in the dialog box, and (b) LISP code
that activates and controls the dialog box.

You do not need to specify the overall size of the dialog box; BricsCAD takes care of that
by automatically sizing it. The default is that tiles are stacked in columns; you only need to
specify when tiles should be aligned in a row.

Some back and forth is permitted while running DCL and LISP; this is known as "callbacks."
Callbacks are used to provide names to file dialog boxes, to gray out certain buttons, to
change the content of popup lists (droplists), and so on.

This chapter shows you how to write DCL with LISP code. Appendix B provides you with
a comprehensive reference to all DCL tiles, their attributes, and related LISP functions.

Your First DCL File

Before writing any code for a dialog box, it is helpful to plan out the tiles. Where will the
buttons, droplists, and text entry boxes go in the dialog box? It’s a good thing to get your
pencil, and then sketch your ideas on paper.

For this tutorial, you will create a dialog box that displays the values stored in these system
variables:

	 LastPoint — stores the last 3D point entered in the drawing.

	 LastAngle — stores the angle defined by the last two points entered.

	 LastPrompt — stores the last text entered at the command line.

	 22  Designing Dialog Boxes with DCL    403

Take a moment to think about the design of the dialog box. It would have a title that explains the
purpose of the dialog box. It probably should have three lines of text that report the name and value
of each system variable. And it should have an OK button to exit the dialog box.

It might look like this:

Title of the dialog box

OK button to exit dialog box

Names of system variables
and their values

Sketching the new dialog box

DCL PROGRAMMING STRUCTURE
The programming structure of this dialog box looks like this:
	 Start the dialog box definition:

	 •  Specify the dialog box’s title

	 •  Specify a column:

		 System variable LastPoint and its 3D coordinates

		 System variable LastAngle and its angle

		 System variable LastPrompt and its text

	 •  Locate the OK button

	 End the dialog box definition.

In this first tutorial, you will write just enough code to display the dialog box and its OK button. In
the tutorials that come later, you add the bells and whistles.

Start Dialog Box Definition
The content of every .dcl file begins with a name attribute. This is the name by which the dialog
code is called later by the associated LISP routine. The name function looks like this:
	 name: dialog {

Like LISP, an open brace needs a closing brace to signal the end of a dialog box definition:
	 }

Between the two braces you write all the code the defines the look of the dialog box.

404    Customizing BricsCAD V20

For this tutorial, name the dialog box "lastInput," as follows:
	 lastInput: dialog {
	 }

DCL names are case-sensitive, so "lastInput" is not the same as "LastINPUT" or "lastinput."

Dialog Box Title
The text for the dialog box’s title bar is specified by the label property, as follows:
	 name: dialog {
		 label = "Dialog box title";
	 }	

Label this dialog box "Last Input" like this:
	 lastInput: dialog {
		 label = "Last Input";
	 }

The title text needs to be surrounded by quotation marks ("). The label property must be termi-
nated with a semicolon (;). And it’s helpful to indent the code to make it readable.

OK Button
Every dialog box needs an exit button, at least an OK. (Windows places a default X button in the
upper-right corner of every dialog box, which also works to exit dialog boxes made with DCL!)

Buttons are defined with the button property, followed by the properties of the button enclosed
in braces:
	 : button {
	 }

Because dialog boxes can have multiple buttons, every button must be identified by a property
called the "key." The key is how LISP gives instructions to buttons. Use the key attribute to identify

QUICK SUMMARY OF DCL METACHARACTERS

DCL Metacharacter	 Meaning							

//	 (slash-slash)	 Indicates a comment line.
/*	 (slash-asterisk)	 Starts comment section.
*/	 (asterisk-slash)	 Ends comment section.
: 1 	 (colon)		 Starts a tile definition. Predefined tiles, like spacer, do not use the colon.
{ 	 (brace)		 Starts dialog and tile attributes.
	 (space)		 Separates symbols.
= 	 (equals)		 Defines attribute values.
""	 (straight quotation)	 Encloses text attributes.
; 2	 (semi-colon)	 Ends attribute definition. Every attribute must end with a semi-colon.
} 	 (brace)		 Ends tile and dialog attributes.

	 22  Designing Dialog Boxes with DCL    405

this OK button as "okButton," as follows:
	 key = "okButton";

The button needs to display a label for users to read. This is an OK button, so label it " OK " with
the label attribute, as follows:
	 label = " OK ";

Let’s put all of these together. The code added for the OK button is shown here in color, with the
key, label, and is_default attributes. (See below for info about the default attribute.) We have a but-
ton identified as "okButton," sporting the label "OK," and is set at the default tile.
	 lastInput: dialog {
		 label = "Last Input";
	 	 : button {
			 key = "okButton";
			 label = " OK ";
			 is_default = true;
		 }
	 }

TIP  The DCL code for the OK button is like a subroutine. The same code can be reused any time a dialog
box needs an OK button, which is pretty much all the time. Later, you will see how to create subroutines
with DCL code.

The Default Tile
To make life easier for users, one tile of a dialog box is always made the default tile. Users need
only press Enter to activate the default tile. Dialog boxes highlight the default tile in some way,
such as with a dashed or colored outline. User can press Tab to move the default focus (currently
highlighted tile) to other areas of the dialog box.

A tile is made the default with the is_default attribute, as follows:
	 is_default = true;

Testing DCL Code

You have enough DCL code to test it now, which lets you see how the dialog box is developing. To
test the code, take these steps:

1.	 Open Notepad, Text Edit, or another ASCII text editor.

2.	 Enter the DCL code we developed earlier:

Entering DCL code into a text editor

406    Customizing BricsCAD V20

LISP CODE TO LOAD AND RUN DIALOG BOXES

The following LISP code is what you use to load, run, and exit the lastInput.dcl dialog box definition file:

(defun C:xx ()

	 (setq dlg-id (load_dialog "c:\\lastInput"))

	 (new_dialog "lastInput" dlg-id)

	 (action_tile "accept" "(done_dialog)")

	 (start_dialog)

	 (unload_dialog dlg-id)

)

To see what the LISP code means, let’s take it apart.

The function is defined as "xx" with LISP’s defun function. Programming = debugging, so I like to use an easy-to-enter
name for the LISP routine, like "xx."

(defun C:xx ()

The lastInput.dcl file is loaded with the load_dialog function. There is no need to specify the ".dcl" extension, because
this is the sole purpose of this function: to load DCL files.

•	 In Windows, include the name of the drive, C:\\. Recall that LISP requires you to use \\ instead of \
	 for separating folder names.

(setq dlg-id (load_dialog "c:\\lastInput"))

•	 In Linux, leave out the name of the drive:

(setq dlg-id (load_dialog "lastInput"))

DCL files can contain more than one dialog box definition, and so the next step is to use the new_dialog function to tell
BricsCAD which one you want to access. In this case, there is just the one, "lastInput."

(new_dialog "lastInput" dlg-id)

The dialog box contains a button named "okButton," and its purpose is defined by LISP — not DCL! Here you use the
action_tile function to assign an action to the "okButton" tile. The button’s purpose in life is to execute the done_dialog
function that exits the dialog box. In short, click OK to exit the dialog box. . You can read this as follows: "the action for
the tile named okButton is ...".

(action_tile "okButton" "(done_dialog)")

After all these preliminaries, the big moment arrives. The start_dialog function launches the dialog box, and waits then
for you to click its button.

(start_dialog)

As neat programmers, we unload the dialog box from memory with the unload_dialog function.

(unload_dialog dlg-id)

And a final parenthesis ends the xx function.

)

	 22  Designing Dialog Boxes with DCL    407

	 Important: Ensure that this DCL file and the LSP file use straight quotation marks that look like this: ". If they

contain curly quotation marks (“ or ”), the routines will fail. LISP will complain, "error: bad argument type

<NIL>; expected <STRING>" while DCL will put up a dialog box complaining, syntax error: unexpected "".

3.	 Save the file as lastinput.dcl. So that the LISP xx.lsp routine can find it easily, save the file in a top level folder:

•	 In Windows, save the DCL file to the C:\ drive.

•	 In Linux and Mac, save the DCL file to your home folder. For example, I log in to Linux with the user

name of "ralphg," so I saved the file in the ralphg folder.

4.	 Now, open a new file, and then enter the LISP code described in the boxed text on the following page: "LISP

Code to Load and Run Dialog Boxes."

Entering LISP code into a text editor

5.	 Save the file as xx.lsp, also in the same folder as the DCL file.

6. 	 Switch to BricsCAD, and then open the xx.lsp file in BricsCAD:

•	 In Windows, use Explorer to drag the xx.lsp file into the BricsCAD drawing window. (Dragging the file is

a lot faster than entering the AppLoad command or using the LISP load function!)

•	 In Linux, you have to use the load function, because files cannot be dragged into the Linux version of

BricsCAD. Enter the following at the ‘:’ prompt:
		 : (load "xx")

7.	 Type xx to run the routine, which then loads the dialog box:
	 : xx

	 Notice that the dialog box appears! Well, it should, if you haven’t made any coding errors.

  
Left: Dialog box in Windows 7.

Right: Dialog box in Linux Mint.

8.	 Click OK to exit the dialog box.

Here is a map of how the DCL code created the dialog box:

Label = “Last Input”;

: button { key = “okButton”;}

Label = “ OK “;

X button provided by Windows

Is_default = true;

The dialog box created by the DCL code

408    Customizing BricsCAD V20

DISPLAYING DATA FROM SYSTEM VARIABLES
The basic structure of the dialog box is in place: the label and the OK button. Now it is time to add
the data we want displayed by the system variables.

The data from the sysvars will look like this in the dialog box:
	 Last angle:	 45

	 Last point:	 1,2,3

	 Last prompt:	 Line

I show the static text in color. It never changes. This text acts like a prompt to tell users what the
numbers mean.

The black text is variable; its display changes, and depends on the value of the associated sysvar.

The Text tile is the one that displays text in dialog boxes, and its code will look like this:
	 : text {
		 label = "Last angle: ";
		 key = "lastAngle";
	 }

Are you able to recognize the attributes of this text tile?

Begin the text with this tile:
	 : text {

Next, the label attribute provides the prompt, ‘Last angle: ’.
	 label = "Last angle: ";

The key attribute identifies the text tile as "lastAngle."
	 key = "lastAngle";

Finally, the text tile is closed with the brace.
	 }

TIP  Text tiles can have the following attributes, as described fully by the DCL reference later in this
ebook:
	 •  alignment
	 •  fixed_height
	 •  fixed_width
	 •  height
	 •  is_bold
	 •  key
	 •  label
	 •  value
	 •  width

	 22  Designing Dialog Boxes with DCL    409

Add the highlighted code to the DCL file...

Adding DCL code in the text editor

...and then run the xx.lsp routine again. Notice that the dialog box now displays the ‘Last angle:’ text:

Dialog box that results from the DCL added code

The next step is to display the value stored by the LastAngle system variable. Add a second text tile:
	 : text {
		 value = "";
		 key = "lastAngleData";
	 }

The value of this tile is initially blank, because it has no label and no value. To complete the text
tile, we need to use a LISP function that extracts the value from the LastAngle system variable, and
then shoves it into the dialog box.

The link between the LISP code and the DCL file is with the key, which is named here "lastAngle-
Data." (I’ll show you the LISP code a bit later on.) Now the DCL file looks like this, with the new
code shown in color. You can copy this code and paste it into the text editor.
lastInput: dialog {
	 label = "Last Input";
	 : text {
		 label = "Last angle: ";
		 key = "lastAngle";
	 }

	 : text {
		 value = "";
		 key = "lastAngleData";
	 }

	 : button {
 		 key = "okButton";
 		 label = "OK";
 		 is_default = true;
 	 }
}

410    Customizing BricsCAD V20

(If you were to run this DCL code now, the dialog box would look no different. It still needs LISP to
tell it the value of the last angle. This is coming up next.)

ADDING THE COMPLIMENTARY LISP CODE
Writing DCL code is always only half the job. The other half is to write the complementary code in
LISP. Extracting the value from LastAngle take these two steps:

	 Step 1: Use the getvar function to access the value of sysvar LastAngle, and then store the gotten value in

variable lang (short for "last angle") with the setq function, as follows:

		 (setq lang (getvar "LastAngle"))

	 Step 2: Use the set_tile function to set the value of lang to the "lastAngleData" tile:

		 (set_tile "lastAngleData" (rtos lang 2 2))

TIP  Tiles work only with text, no numbers. However, the value of LastAngle is a number, so you have to
convert it to text. This is done with the rtos function:
	 (rtos lang 2 2))
Here, I am converting the real number to a string (a.k.a. text) using mode 2 (decimal) and precision 2 (two
decimal places).

With the new lines of code shown in color, the LSP file now looks like this:
(defun C:xx ()
	 (setq dlg-id (load_dialog "c:\\lastInput"))
	 (new_dialog "lastInput" dlg-id)
	 (setq lang (getvar "lastangle"))
	 (set_tile "lastAngleData" (rtos lang 2 2))
	 (action_tile "okButton" "(done_dialog)")
	 (start_dialog)
	 (unload_dialog dlg-id)
)

Save the .dcl and .lsp files, and then reload and run xx.lsp in BricsCAD.

The dialog box now looks like this:

Dialog box reporting the angle value

CLUSTERING TEXT
Hmmm... the two pieces of text are stacked on top of one another, and that is a problem. They
should be horizontal. The text is stacked vertically, because DCL places tiles in columns by default.

The solution is to force the two text tiles to appear next to each other with the Row tile:
	 : row {
		 : text {
			 label = "Last angle: ";
			 key = "lastAngle";
		 }

	 22  Designing Dialog Boxes with DCL    411

		 : text {
			 value = "";
			 key = "lastAngleData";
		 }
	 }

Modify the DCL file by adding the row tile, and then rerun the LISP file. The result should look
better, like this:

Angle text formatted into a single line

Now that the last-angle text looks proper, you can copy and paste its code for use by the other two
lines, and then make suitable modifications. The changes you need to make are shown below in color:
	 : row {
		 : text {
			 label = "Last point: ";
			 key = "lastPoint";
		 }

		 : text {
			 value = "";
			 key = "lastPointData";
		 }
	 }	

And for final prompt:
	 : row {
		 : text {
			 label = "Last prompt: ";
			 key = "lastPrompt";
		 }

		 : text {
			 value = "";
			 key = "lastPromptData";
		 }
	 }

Running xx.lsp gives the dialog box all three prompts, but data is missing from the two new ones:

Added lines of info

Supplying the Variable Text
The data is supplied by LISP code. Here we look at how to handle 3D coordinates and text.

Recall that LISP returns the value of points as list of three numbers, like this:
	 (1.0000 2.0000 3.0000)

412    Customizing BricsCAD V20

The numbers represent the x, y, and z coordinates, respectively. We need to convert the list of three
numbers to a string — why does it have to be so hard?! Use the following code, which assumes that
variable lpt contains (1.0000 2.0000 3.0000):
	 (car lpt)

The car function extracts the x-coordinate from the list as a real number, such as 1.0000. Similarly:
	 (cadr lpt)

	 (caddr lpt)

The cadr and caddr functions extract the y (2.0000) and z (3.0000) coordinates, respectively. To
convert the real numbers to strings, use the rtos function, as follows:
	 (rtos (car lpt))

	 (rtos (cadr lpt))

	 (rtos (caddr lpt))

And then to combine the three individual strings into one string, use the strcat (string concatena-
tion) function, as follows:
	 (strcat
		 (rtos (car lpt))
		 (rtos (cadr lpt))
		 (rtos (caddr lpt))
)

This code displays 1.000 2.000 3.000. It would be a nice touch to put commas between the numbers:
	 (strcat
		 (rtos (car lpt)) ","
		 (rtos (cadr lpt)) ","
		 (rtos (caddr lpt))
)

Put both lines of code together, and we arrive at the LISP needed to implant the value of the Last-
Point system variable in the dialog box:
	 (setq lpt (getvar "lastpoint"))
	 (set_tile "lastPointData" (strcat (rtos (car lpt)) "," (rtos (cadr lpt)) "," (rtos
		 (caddr lpt))))

Add the code to the xx.lsp, and then run it in BricsCAD to see the result.

Adding the last point data

	 22  Designing Dialog Boxes with DCL    413

Leaving Room for Variable Text
Oops, the numbers are cut off. BricsCAD sizes the dialog box is sized before the LISP code inserts
the data, so it doesn’t know that the dialog box needs to be bigger to accommodate the x,y,z coor-
dinates — which can run to many characters in length.

The solution is to use the width attribute for each text tiles, like this:
		 : text {
			 value = "";
			 key = "lastAngleData";
		 	 width = 33;
		 }

When added to the DCL file, the result looks like this:

Adding last x,y point data

FIXING THE BUTTON WIDTH
Oops. Now the OK button is too wide. To make it narrower (i.e., fix its width), use the fixed_width
attribute in the DCL file:
	 fixed_width = true;

By setting it to true, the button is made only as wide as the label.

More changes

Centering the Button
Oops! Now the button is no longer centered. By default, the button is left-justified. To center it, use
the alignment attribute:
	 alignment = centered;

Add the new code to the button portion of the DCL file...
	 : button {
 		 key = "okButton";
 		 label = "OK";
 		 is_default = true;
	 	 alignment = centered;
		 fixed_width = true;
 	 }

414    Customizing BricsCAD V20

...and then rerun the xx.lsp file to see that the properly-sized OK button is centered.

TESTING THE DIALOG BOX
It’s always a good idea to test the dialog box under a number of situations. Use the Line command
to draw a few lines. This action changes the values of the three sysvars. Re-run the xx.lsp routine.
The values displayed by the dialog box should be different.

Properly formatted dialog box

Defining the Command
So far, you’ve been running xx.lsp to develop and test the dialog box. Now that it’s running properly,
you should change the "xx" name to one that is more descriptive. Rename the LISP file as last.lsp,
and change the function name inside to C:last, and make the variables local, as follows:
(defun c:last (/ dlg-id lang lpt lcmd)
	 (setq dlg-id (load_dialog "c:\\lastInput"))
	 (new_dialog "lastInput" dlg-id)
	 (setq lang (getvar "lastangle"))
		 (set_tile "lastAngleData" (rtos lang))
	 (setq lpt (getvar "lastpoint"))
		 (set_tile "lastPointData" (strcat (rtos (car lpt)) "," (rtos (cadr lpt)) "," 		
	 (rtos (caddr lpt))))
	 (setq lcmd (getvar "lastprompt"))
		 (set_tile "lastPromptData" lcmd)
	 (action_tile "okButton" "(done_dialog)")
	 (start_dialog)
	 (unload_dialog dlg-id)
)

The DCL file looks like this, in its entirety:
lastInput: dialog {
	 label = "Last Input";
	 : row {
		 : text {
			 label = "Last angle: ";
			 key = "lastAngle";
		 }

		 : text {
			 value = "";

	 22  Designing Dialog Boxes with DCL    415

			 key = "lastAngleData";
			 width = 33;
		 }
	 }

	 : row {
		 : text {
			 label = "Last point: ";
			 key = "lastPoint";
		 }

		 : text {
			 value = "";
			 key = "lastPointData";

			 width = 33;
		 }
	 }	

	 : row {
		 : text {
			 label = "Last prompt: ";
			 key = "lastPrompt";
		 }

		 : text {
			 value = "";
			 key = "lastPromptData";
			 width = 33;
		 }
	 }

	 : button {
 		 key = "okButton";
 		 label = "OK";
 		 is_default = true;
		 alignment = centered;
		 fixed_width = true;
 	 }
}

If you would like to have this command loaded automatically each time you start BricsCAD, add
last.lsp to the AppLoad command’s startup list.

416    Customizing BricsCAD V20

Examples of DCL Tiles

With the basic tutorial behind you, let’s take a look at how to code other types of dialog box features.
In this last part of the chapter, we look at how to code the following tiles:

	 Buttons

	 Check boxes (toggles)

	 Radio buttons

	 Clusters (columns and rows)

Recall that two pieces of code are always required: (1) the DCL code that specifies the layout of the
dialog box, and (2) the LISP code that activates the dialog box.

Appendix B provides you with a comprehensive reference to all DCL tiles, their attributes, and
related LISP functions.

BUTTONS
In the preceding tutorial, you coded an OK button that allowed you to exit the dialog box. It turns
out that you don’t need to do the coding, because BricsCAD codes a number of buttons and other
dialog box elements for you. These are found in a file called base.dcl that is normally loaded into
BricsCAD automatically. (The full list is provided in the appendix).

The names of the pre-built tiles are:

Prebuilt Tile		 Button(s) Displayed					

ok_only		 OK
ok_cancel 		 OK  Cancel
ok_cancel_help		 OK  Cancel  Help
ok_cancel_help_info 	 OK  Cancel  Help  Info...
Ok_Cancel_Help_Errtile	 OK  Cancel  Help, plus space for error messages.

Use these prebuilt tiles to ensure a consistent look for your dialog boxes. Here is an example of how
to use these buttons in DCL files:
	 ok_only;

It’s just that easy!

Notice that the tile name lacks the traditional colon (:) prefix, but does require the semicolon (;
) terminator.

DCL allows you to create buttons that have labels made of text (button tiles) or images (image_but-
ton tiles).

To indicate that the button opens another dialog box, use an ellipsis (...), such as Info....

	 22  Designing Dialog Boxes with DCL    417

In addition to text and image buttons, settings can be changed with check boxes (toggle tiles) and
radio buttons (radio_button tiles), as described next.

Making Buttons Work
OK and Cancel are easy, because their functions are already defined. It’s one thing to populate a
dialog box with buttons; it’s another to have them execute commands.

Let’s see how to make buttons execute commands. In the tutorial, you create a dialog box with Plot
and Preview buttons. The figure below shows how it will look in Linux; it looks similar in Windows.

The purpose of the Plot button is to execute the Plot command, and of Preview button to execute
the Preview command.

The easy solution would be to add an action attribute to each button to execute a LISP function,
such as (command "plot"). But we cannot, because DCL does not allow the highly-useful com-
mand function to be used in the action attribute!

The key to solving the problem is the key attribute. It gives buttons identifying names by which
LISP functions can reference them, such as:
	 key = "plot";

Then, over in the LISP file, you use the action_tile function to execute the Plot command. Well,
not quite. It has the same restriction against use of the command function, so you must approach
this indirectly by getting action_tile to refer to a second LISP routine, such as (action_tile "plot"
"(cmd-plot)").

But even this will not work, because you need your custom dialog box to disappear from the screen,
and be replaced by the Plot dialog box. The solution is to become even more indirect:
	 (action_tile "plot" "(setq nextDlg 1) (done_dialog)")

	 "plot" — identifies the Plot button through its key, "plot".

	 (setq nextDlg 1) — records that the user clicked the Plot button for further processing later on.

	 (done_dialog) — closes the dialog box.

This is done twice, once each when the user clicks the Plot button or the Preview button. The Pre-
view button’s code is similar; changes are shown in boldface:
	 (action_tile "preview" "(setq nextDlg 2) (done_dialog)")

Then, you need some code that decides what to do when nextDlg is set to 1 or 2:
	 (if (= nextDlg 1) (cmd-plot))

	 (if (= nextDlg 2) (cmd-preview))

418    Customizing BricsCAD V20

When nextDlg = 1, then the following subroutine is run:
	 (defun cmd-plot ()
		 (command "print")
)

The purpose of the Print command is to force BricsCAD to display the dialog box of the Plot com-
mand; otherwise, the prompts are displayed at the command line.

If you prefer the prompts at the command line, then change the code:
	 (defun cmd-plot ()
		 (command "plot")
)

When nextDlg = 2, then the following subroutine is run instead:
	 (defun cmd-preview ()
 		 (command "preview")
)

With the planning behind us, let’s look at all the code. First, in the x.dcl file, you add the key attributes
to each button. The code that relates to the Plot button is shown boldface, while Preview-related
code is shown in color:
	 x: dialog { label = "Plot";
	 : row {
		 : button { label = "Plot"; mnemonic = "P"; key = plot; }
		 : button { label = "Preview"; mnemonic = "v"; key = "preview"; }
		 cancel_button;
	 } }

Second, in the xx.lsp file, you add the code that executes the Plot and Preview commands.
	 (defun c:xx (/)
		 (setq dlg-id (load_dialog "c:\\x"))
		 (new_dialog "x" dlg-id)
			 (action_tile "plot" "(setq nextDlg 1) (done_dialog)")
	 		 (action_tile "preview" "(setq nextDlg 2) (done_dialog)")
		 (start_dialog)
		 (unload_dialog dlg-id)
		 (if (= nextDlg 1) (cmd-plot))
	 	 (if (= nextDlg 2) (cmd-preview))
)

	 (defun cmd-plot ()
		 (command "print")
)

	 (defun cmd-preview ()
		 (command "preview")
)

In Linux, remember to remove the “c:\\” so that the load_dialog line reads as follows:
	 (setq dlg-id (load_dialog "x"))

When the dialog box appears, click each button to ensure it executes the related command.

	 22  Designing Dialog Boxes with DCL    419

Check Boxes
Check boxes allow you to have one or more options turned on. They contrast to radio buttons, which
limit you to a single choice. Check boxes are created by the toggle tile.

Top: Radio buttons made with the radio tile.
Above: Check boxes made with the toggle tile

In this tutorial, you create a check box that changes the shape of point objects. This is accomplished
by changing the value of the PdMode system variable. Yes, there is the DdPType command that
does the same thing, but this is a difference approach, as you will see.

The PdMode system variable can take these values:

PdMode		 Meaning				

0			 Dot (.)
1			 Nothing
2			 Plus (+)
3			 Cross (x)
4			 Short vertical line (|)
32			 Circle
64			 Square

In addition, these numbers can be combined through addition. For example, 34 (32 + 2) adds a
circle (32) to the plus symbol (2).

Left to right: PdMode = 32, 33, and 34.

Here is a peculiarity to points to be aware of: 32 actually a circle with dot (32 + 0), because 0 draws
a dot. In comparison, 33 (32 + 1) is the circle alone, because the 1 displays nothing!

Let’s see how to create a dialog box that lets us select combinations of the plus, circle, and square
point symbols. How about a dialog box that looks something like this...

x: dialog { label = "Point Style";

: column { label = "Select a point style: " ;

: toggle { key = "plus" ; label = "Plus" ; value = "1" ; }

: toggle { key = "circle" ; label = "Circle" ; }

: toggle { key = "square" ; label = "Square" ; }

ok_cancel;

420    Customizing BricsCAD V20

Here is the code needed to generate the dialog box:
	 x: dialog { label = "Point Style";
		 : column { label = "Select a point style: " ;
			 : toggle { key = "plus" ; label = "Plus" ; value = "1" ; }
			 : toggle { key = "circle" ; label = "Circle" ; }
			 : toggle { key = "square" ; label = "Square" ; }
		 }
		 ok_cancel;
	 }

Notice that value = "1" turns on the Plus option (to show the check mark), making it the default value.

Now let’s write the LISP file to make the dialog box work. Something as simple as (action_tile "plus"
"(setvar "pdmode" 2)") doesn’t work, because the user might want to select more than one option
— which is the whole point to toggles. You need the code to go through three steps:

	 Step 1: Read which option(s) users have checked.

	 Step 2: Add up the setting(s).

	 Step 3: Set PdMode to show the desired point style.

Let’s implement it:

1.	 To read user input from dialog boxes, employ LISP’s $value variable for the Plus toggle:
		 (action_tile "plus" "(setq plusVar $value)")

	 Repeat the code for the other two toggles, Circle and Square:
		 (action_tile "circle" "(setq circleVar $value)")
		 (action_tile "square"(setq squareVar $value)")

2.	 The $value variable contains just 1s and 0s. Later, we will use a lookup table to convert the 1s and 0s into the

values expected by PdMode. For instance, if Plus is selected ("1"), then PdMode expects a value of 2. The

lookup table uses the if function to correct the numbers, as follows:
		 (if (= plusVar "1") (setq plusNum 2) (setq plusNum 0))

	 This can be read as:

		 	 If plusVar = 1, then set plusNum = 2;

			 otherwise, set plusNum = 0.

	 Repeat the lookup code for the other two toggles, Circle and Square:
		 (if (= squareVar "1") (setq squareNum 64) (setq squareNum 0))
		 (if (= circleVar "1") (setq circleNum 32) (setq circleNum 0))

TIP	 The $value retrieved by get_tile is actually a string, like "1". The PdMode system variable, how-
ever, expects an integer. Thus, the lookup table performs a secondary function of converting strings to
integers.

	 With the values set to what PdMode expects, add them up with the + function:
		 (setq vars (+ plusNum circleNum squareNum))

3.	 To change the value of PdMode, you employ LISP’s setvar function, like this:
		 (setvar "pdmode" vars)

	 22  Designing Dialog Boxes with DCL    421

Here is all of the LISP code:
	 (defun c:xx (/)
		 (setq dlg-id (load_dialog "c:\\x"))
		 (new_dialog "x" dlg-id)

;; Get the current values from each toggle tile:

		 (setq plusVar (get_tile "plus"))
		 (setq circleVar (get_tile "circle"))
		 (setq squareVar (get_tile "square"))

;; See which toggles the user clicks:

		 (action_tile "plus" "(setq plusVar $value)")
		 (action_tile "circle" "(setq circleVar $value)")
		 (action_tile "square" "(setq squareVar $value)")

		 (start_dialog)
		 (unload_dialog dlg-id)

;; Lookup table converts "0"/"1" strings to the correct integers:

		 (if (= plusVar "1") (setq plusNum 2) (setq plusNum 0))
		 (if (= circleVar "1") (setq circleNum 32) (setq circleNum 0))
		 (if (= squareVar "1") (setq squareNum 64) (setq squareNum 0))

;; Add up the integers, and then change system variable:

		 (setq vars (+ plusNum circleNum squareNum))
		 (setvar "pdmode" vars)
)

Radio Buttons
Radio buttons are easier to code than toggles, because only one can be active at a time.

In this tutorial, you create a dialog box that uses radio buttons to change the isoplane. The dialog
box changes the value of the SnapIsoPair system variable, which takes the following values:

SnapIsoPair	 Meaning			

0		 Left isoplane (default).
1		 Top isoplane.
2		 Right isoplane.

To make a dialog box that looks like this...

x: dialog { label = "Isolane";

: column { label = "Change the isoplane to:" ;

: toggle { key = "left" ; label = "Left isoplane" ; value = "1" ; }

: toggle { key = "top" ; label = "Top isoplane" ; }

: toggle { key = "right" ; label = "Right isoplane" ; }

ok_cancel;

422    Customizing BricsCAD V20

... takes this code:
	 x: dialog { label = "Isoplane";
		 : column { label = "Change the isoplane to: " ;
			 : radio_button { key = "left" ; label = "Left isoplane" ; value = "1" ; }

			 : radio_button { key = "top" ; label = "Top isoplane" ; }
			 : radio_button { key = "right" ; label = "Right isoplane" ; }
			 spacer;
		 }
		 ok_cancel;
	 }

Notice that value = "1" turns turns on the X for the check box next to Left.

Before going on to the accompanying LISP file, first set up BricsCAD to display isometric mode:

1.	 Enter the Settings command.

2.	 In the Search field, enter "Snap Style."

3.	 In the Snap Type droplist, select Isometric snap.

4.	 Click X to dismiss the dialog box.

BricsCAD is now in isometric mode.

As you use the dialog box described below, the cursor changes its orientation:

Left to right: Cursor for the left, top, and right isoplanes.

Let’s now turn to the LISP file that will make this dialog box work. It is similar to the code used for
toggles; the primary difference is that values are not added together:

	 (defun c:xx (/)
		 (setq dlg-id (load_dialog "c:\\x"))
		 (new_dialog "x" dlg-id)

;; See which radio button the user clicks:

		 (action_tile "left" "(setq leftVar $value)")
		 (action_tile "top" "(setq topVar $value)")
		 (action_tile "right" "(setq rightVar $value)")

		 (start_dialog)
		 (unload_dialog dlg-id)

;; Lookup table:

		 (if (= leftVar "1") (setq vars 0))
		 (if (= topVar "1") (setq vars 1))
		 (if (= rightVar "1") (setq vars 2))

;; Change system variable:

		 (setvar "snapisopair" vars)
)

	 22  Designing Dialog Boxes with DCL    423

We have been cheating a bit, because we are forcing the dialog box to show the Left isoplane as the
default. This is not necessarily true. You really should modify the DCL and LISP code to make the
dialog box initially show the default isoplane — whether left, top, or right.

Setting the default is done with LISP’s set_tile function. First, change the DCL code so that it no
longer makes the Left isoplane the default: change value = "1" to:
	 value = ""

In the LISP code, you need to do the following: (a) extract the value of SnapIsoPair with getvar,
and then (b) use set_tile as a callback.

1.	 Extract the current value of SnapIsoPair with the getvar function:
	 (setq vars (getvar "snapisopair"))

2.	 Set the default button with the set_tile function:
	 (if (= vars 0) (set_tile "left" "1"))

	 This reads, as follows:

			 If the value of SnapIsoPair is 0 (= vars 0),

			 then turn on the Left isoplane radio button (set_tile "left" "1").

	 Write similar code for the other two radio buttons:
	 (if (= vars 1) (set_tile "top" "1"))
	 (if (= vars 2) (set_tile "right" "1"))

The other change you need to make is to change some of the variables to local:
	 (defun c:xx (/ leftVar topVar rightVar)

This forces the three variables to lose their value when the LISP routine ends. Otherwise, rightVar
keeps its value (it’s the last one) and makes Right isoplane the default each time the dialog box is
opened.

With these changes in place, the improved code looks like this — with changes highlighted in
boldface:
	 (defun c:xx (/ leftVar topVar rightVar)
		 (setq vars (getvar "snapisopair"))
		 (setq dlg-id (load_dialog "c:\\x"))
		 (new_dialog "x" dlg-id)

;; Set the default button:

		 (if (= vars 0) (set_tile "left" "1"))
		 (if (= vars 1) (set_tile "top" "1"))
		 (if (= vars 2) (set_tile "right" "1"))

;; See which radio button the user clicks:

		 (action_tile "left" "(setq leftVar $value)")
		 (action_tile "top" "(setq topVar $value)")
		 (action_tile "right" "(setq rightVar $value)")

		 (start_dialog)
		 (unload_dialog dlg-id)

424    Customizing BricsCAD V20

;; Lookup table:

		 (if (= leftVar "1") (setq vars 0))
		 (if (= topVar "1") (setq vars 1))
		 (if (= rightVar "1") (setq vars 2))

;; Change system variable:

		 (setvar "snapisopair" vars)

)

Now each time the dialog box starts, it correctly displays the default isoplane, such as “Right,” as
illustrated below:

CLUSTERS
Clusters help you combine related groups of controls. DCL lets you specify vertical, horizontal,
boxed, and unboxed clusters. In addition, radio clusters are required when you want to have two
radio buttons on at the same time. In all other cases, clusters are needed only for visual and orga-
nizational purposes.

BricsCAD makes it look as if there are eight tiles for making clusters:

	 	 Column	 	 	 	 Row

	 	 Boxed_Column	 	 	 Boxed_Row

	 	 Radio_Column	 	 	 Radio_Row

	 	 Boxed_Radio_Column	 	 Boxed_Radio_Row

But these eight can be reduced to three, when you take the following into account:

•	 The column tile is usually not needed, because BricsCAD automatically stacks tiles vertically into columns.

•	 The column and row tiles display a box as soon as you include a label for them.

•	 Tiles with radio in their names are only for clustering radio buttons.

Columns and Rows
BricsCAD normally stacks tiles, so no column tile is needed, as illustrated by this DCL code:
	 x: dialog {
			 : button { label = "&Button"; }
			 : button { label = "&Click"; }
			 : button { label = "&Pick"; }
		 ok_only;
	 }

	 22  Designing Dialog Boxes with DCL    425

: button { label = "&Button"; }

: button { label = "&Click"; }

: button { label = "&Pick"; }

ok_only;

(The ampersand — & — specifies the shortcut keystroke that accesses the button from the keyboard
with the Alt key, such as pressing Alt+B.)

To create a horizontal row of tiles, use the row {} tile, as shown in boldface below:
	 x: dialog {
		 : row {
			 : button { label = "&Button" ;}
			 : button { label = "&Click"; }
			 : button{ label = "&Pick" ;}
		 }
		 ok_only;
	 }

The boxing of the horizontal row is invisible, so I highlighted it with a blue rectangle.

Because the ok_only tile is outside of the row {} tile, it is located outside of the cluster, stacked
vertically below the row of three buttons.

Boxed Row
To actually show a rectangle (box) around the three buttons, change "row" to boxed_row, as follows:
	 x: dialog {
		 : boxed_row {

		 // et cetera

		 }
		 ok_only;
	 }

The box is made of white and gray lines to give it a chiseled 3D look.

426    Customizing BricsCAD V20

Boxed Row with Label
You can add text to describe the purpose of the boxed buttons with the label attribute, as shown
in boldface below:
	 x: dialog {
		 : boxed_row { label = "Three Buttons";

		 // et cetera

		 }
		 ok_only;
	 }

The curious thing is that you get the same effect whether using the boxed_row or row tile. That’s
right: when you add a label to the row tile, BCL automatically adds a box around the cluster.

To eliminate the box, precede the row with the text tile for the title, as follows:
	 x: dialog {
		 : text { label = "Three Buttons";}
		 : row {

		 // et cetera

		 }
		 ok_only;
	 }

Special Tiles for Radio Buttons
You can use the regular row and column tiles with radio buttons, except in one case: when more
than one radio button needs to be turned on. Recall that only one radio button can be on (shown
the black dot) at a time; BricsCAD automatically turns off all other radio buttons that might be set
to on (value = "1").

The solution is to use two or more radio_column tiles, each holding one of the radio button sets
that need to be on.

It is not recommended to use rows for radio buttons, because this horizontal configuration is psy-
chologically more difficult for users.

	 22  Designing Dialog Boxes with DCL    427

Debugging DCL

The most common DCL coding errors are due to errors in punctuation, such as leaving out a clos-
ing semi-colon or quotation mark. These problems are announced by error-message dialog boxes,
which I illustrate later in this section.

DCL_SETTINGS
DCL contains a debugger for finding certain coding errors. To activate the debugger, add the au-
dit_level parameter to the beginning of the DCL file, before the dialog tile:
	 dcl_settings : defalut_dcl_settings { audit_level = 3 ; }
	 x : dialog { // et cetera

The debugger operates at four levels:

Audit Level	 Meaning								

0 		 No debugging performed.
1 		 (Default) Checks for DCL errors that may terminate BricsCAD, such as undefined
		 tiles or circular prototype definitions.
2		 Checks for undesirable layouts and behaviors such as missing attributes or
		 wrong attribute values.
3		 Checks for redundant attribute definitions.

DCL ERROR MESSAGES
BricsCAD displays DCL-related error messages in dialog boxes. You may encounter some of the
following:

Semantic error(s) is DCL file
Sometimes an error dialog box suggests that you look at the acad.dce file — the DCL error file. The
problem is that the dialog box doesn’t tell you where this file is located. After running Windows
Search on my computer’s C: and D: drives, I finally found the file in the D:\documents and settings\
administrator\my documents folder.

The file contains information about errors, such as:
	 ====== DCL semantic audit of c:\x ======

	 Error. Widget named "asdfasfads" is undefined.

It’s not clear to me why some errors are displayed directly in the message dialog boxes, while oth-
ers are stored in the acad.dce file.

Dialog has neither an OK nor a CANCEL button
Dialog boxes need to exit through an OK or Cancel button. At the very least, add the ok_only tile
to the DCL file. DCL was written before Windows automatically added the x (cancel) button to all
dialog boxes, and Autodesk has failed to update DCL to take this innovation into account.

428    Customizing BricsCAD V20

Error in dialog file "filename.dcl", line n
Your DCL file contains the name of a tile unknown to BricsCAD. Check its spelling. In this example,
ok_only was prefixed by a colon (:), which is incorrect for prebuilt tiles.
	 Incorrect:	 : ok_only ;

	 Correct:		 ok_only ;

Dialog too large to fit on screen
A tile in the DCL file is creating a dialog box that would not fit your computer’s screen. This can
happen when the edit_edith, width, or height attributes are too large.

Additional Resources

There is more to learn about writing dialog boxes with DCL, such as through these DCL tutorials:

ÐÐ AfraLisp at https://www.afralisp.net/dialog-control-language/ sports tutorials on AutoCAD, including these
topics:

	 Getting Started
	 DCL Primer - Download
	 Dialog Box Layout
	 Dialogue Boxes Step by Step
	 Dialogue Boxes in Action
	 Nesting and Hiding Dialogues
	 Hiding Dialogues Revisited
	 LISP Message Box
	 LISP Input Box
	 Referencing DCL Files
	 LISP Functions for Dialog Control Language (DCL)
	 Functional Synopsis of DCL Files
	 DCL Attributes
	 Dialogue Box Default Data
	 DCL Model
	 DCL Progress Bar
	 Attributes and Dialogue Boxes
	 DCL without the DCL File
	 The AfraLisp DCL Tutorials
	 Entering Edit Boxes

	 22  Designing Dialog Boxes with DCL    429

ÐÐ Jeffery Sanders has at http://www.jefferypsanders.com/autolisp_DCL.html his “DCL: Dialog Control Language”
tutorial:

	 Getting Started
	 Rows and Columns
	 Controls
	 Image
	 Action
	 Set_Tile and Mode_Tile
	 List and how to handle them.
	 Saving data from the dialog box
	 Part 1 - Buttons
	 Part 2 - Edit_Box
	 Part 3 - List_Box
	 Part 4 - PopUp_List
	 Part 5 - Radio_Buttons
	 Part 6 - Text and Toggle
	 Part 7 - Putting it all together

430    Customizing BricsCAD V20

Notes

Dabbling in VBA

The Pro and Platinum versions of BricsCAD for Widows include one of Microsoft’s program-
ming languages, VBA — Visual Basic for Applications. This is a version of Visual Basic designed to
work inside of software programs. BricsCAD runs VBA programs from menus and toolbars, and at
the command prompt.

VBA is completely different from LISP, just as LISP is completely different from Diesel and macros.
If you learned the BASIC programming language, then that knowledge will be of no help, unfortu-
nately, because Visual Basic has nothing in common with BASIC except for the name.

This chapter introduces you to the concepts of VBA programming and show you how to use it in
BricsCAD. (The Classic, MacOS, Linux, and demo versions of BricsCAD do not include VBA.)

CHAPTER SUMMARY

The following topics are covered in this chapter:

•	 Introducing Visual Basic for Applications

•	 Learning about VBA-related commands

•	 Sending commands through VBA

•	 Using the VBA programming environment

•	 Designing dialog boxes

•	 Examining VBA code

CHAPTER 23

432    Customizing BricsCAD V20

QUICK SUMMARY OF VBA PROGRAM COMPONENTS

Projects store macros. (LISP calls these “programs.”)

Macros refer to chunks of VBA programming code. (LISP calls these “functions.”) VBA macros can be embedded (stored
in drawings) or saved to .dvb files on disk. See the boxed text for the pros and cons of each.

Reactors are pieces of macro code that react to events in the drawing, such as the drawing being saved, an object added
to the drawing, or the user clicking a mouse button.

Forms refer to the location where VBA code is constructed. Often, forms look like dialog boxes.

Controls refer elements in forms, such as check boxes and droplists.

Classes are definitions of objects. For example, AcadLine is the class that defines the line entity.

Objects refer to classes put into forms. The objects can have the following attributes:

	 Properties that describe the object, such as its color, height, and width.

	 Methods that modify objects, such as copying and rotating them.

	 Events that report when objects are modified.

QUICK SUMMARY OF VBA COMMANDS IN BRICSCAD

The VBA-related command names are shown below in boldface, while equivalent menu names are shown in parentheses.
You access the menu items from the Tools | VBA menu.

Vba (Visual Basic for Applications) opens the VB Editor for writing and debugging macros.

VbaRun (Macros) loads and runs VBA macros; displays the Macros dialog box and lists the names of VBA macros stored
in the current drawing.

VbaNew (New Project) specifies the name of a new VBA project file.

VbaLoad (Load Project) loads .dvb VBA project files; displays the Open dialog box.

-VbaLoad command load .dvb project files at the command prompt.

VbaMan (Project Manager) displays the VBA Manager dialog box.

AddInMan (Add-in Manager) lists programs that can be loaded into BricsCAD, and controls how they are loaded; displays
the Add-In Manager dialog box.

(VbaStmt is not supported by BricsCAD; its purpose in other programs is to load and run macros at the command prompt.)

	 23  Dabbling in VBA    433

Introduction to VBA

VBA is the second most-important programming language in BricsCAD. While LISP is the easier of
the two to learn and use, it becomes cumbersome and slow for large programs and large sets of
data. Furthermore, to create dialog boxes, LISP requires that you employ the difficult-to-understand
DCL system.

At the other end of the programming spectrum is DRX or BRX, the DWG or BricsCAD runtime
extensions. These programming interfaces are the fastest of all, because they are intimately tied
into BricsCAD. You use D/BRX application programming interfaces with programs written in C or
one of its offshoots. They are not simple to learn, and they present a drawback: you must pay for
a compiler that works with D/BRX. In contrast, LISP is free with all versions of BricsCAD, and VBA
is free with BricsCAD Pro. DRX is not covered by this book. Note that as of BricsCAD V8, B/DRX
replaces SDS, the Softdesk Development System. Also as of V8, BricsCAD switched the format of its
VBA source files from IntelliCAD’s VBI to AutoCAD’s DVB format.

In contrast, VBA is fast and is designed with today’s user interfaces in mind. An advantage to learn-
ing VBA is that you can use the same programming language in many other Windows programs;
learn once, program in many. Perhaps the toughest part of learning VBA is getting to know its
jargon. Let’s begin!

ACCESSING VBA PROGRAMS
You write VBA code in a separate programming environment called the "VB Editor." The editor
provides assistance in writing the code, as well as constructing the user interface, which usually
consists of dialog boxes.

You can run VBA programs at the BricsCAD command line or through its Add In Manager dialog
box. Programs can also be launched from menu and toolbar macros, as well as from VisualLISP
functions, topics not covered by this ebook.

The code can be embedded in a BricsCAD drawing or kept outside of BricsCAD for access by all
drawings:

ÐÐ To run embedded macros, use the VbaRun command.

ÐÐ To run the macros stored in a .dvb project file, first load them through the VbaMan dialog box or the VbaLoad
command prompt. Once loaded, the macros can be run with the either the VbaRun or VbaMan commands.

Sending Commands

VBA has a command that works just like the LISP (command) function: SendCommand executes
any BricsCAD command, such as Line, Erase, and Zoom. The function also handles command op-
tions, such as "1,1" and "All."

434    Customizing BricsCAD V20

EMBEDDED OR EXTERNAL

BricsCAD stores VBA macros in drawings (embedded) or in .dvb files (external). There are pros and cons to each method,
as listed by the following table:

		 Embedded			 External			

Storage:	 in drawings			 in .dvb files
Loading:	 loaded with drawings		 loaded with VbaLoad command
Distribution:	 with the .dwg file			 with the .dvb file
Reactors:	 yes				 no

An embedded macro cannot be used by other drawings, unless you specifically embed it into other drawing files.

Use the VbaMan command’s Embed button to convert projects to embedded projects. A serious problem with embed-
ded macros is that they can contain viruses. Hence, BricsCAD displays a warning dialog box that gives you the option
of disabling or enabling macros, or preventing them from loading at all.

Let’s take a look at it. Here is the VBA code for drawing a line between several pairs of x,y coordinates.
Sub Using_the_SendCommand()

	 ThisDrawing.SendCommand "line 1,1 1,8 11,8 11,1 c "

End Sub

TIP  This VBA code isn’t too different from the equivalent code in LISP, which looks like this:
	 (defun using_the_sendcommand ()
	   (command "line 1,1 2,2 c ")
)

The words used in the snippet of VBA code have the following meaning:

Sub	 starts a new subroutine (or function).

Using_the_SendCommand() names the subroutine. The parentheses () indicate that no variables are used. Unlike

LISP, VBA needs to know the names of variables and their type ahead of time. I’ll cover variables and types

later in this chapter, but for now it’s enough to know that type refers to the type of data the variable holds,

such as text (strings), whole numbers (integers), decimal numbers (reals), and other kinds of data.

ThisDrawing.SendCommand operates in the current drawing, identified generically by "ThisDrawing." You do not

specify the drawing’s name, you just need to use "ThisDrawing," and VBA knows what you’re talking about.

"line 1,1 1,8 11,8 11,1 c " executes the Line command, drawing four lines that make up rectangle between 1,1 to 11,8.

The command and its prompts are read as a string, and then sent to BricsCAD’s command processor — just

as if you had typed this at the command prompt.

TIP  To end the command correctly, ensure that the string has a space at the end, just before the closing
quotation mark. In the code above, you can see the space between the c and the ".

 End Sub signals the end of the subroutine.

	 23  Dabbling in VBA    435

WRITING AND RUNNING VBA ROUTINES
Whereas Notepad or other text editor can be used to write LISP routines, a programming environment
included with BricsCAD must be used for VBA. You use this environment to write and run all code.

To access the VBA editor, follow these steps:

1.	 The first step is to ensure that BricsCAD can run VBA macros. Because VBA is a source of viruses, the ability to

run VBA programs is normally turned off. Here is now to enable VBA macros:

a.	 From the BricsCAD Tools menu, choose Security. Notice the Security dialog box.

	
b.	 If necessary, choose the Security Level tab.

TIP  This dialog box is necessary because of a poor decision by Microsoft programmers. When they
created VBA: they allowed documents to store VBA code. This convenient feature turned into a major
security problem, because it made it easy for hackers to distribute benign-looking Word and Excel files that
contained malicious VBA code.
	 After too many people and companies suffered from having precious files erased from their
computers, Microsoft finally added this dialog box to overcome the VBA exploit. Today, Windows-based
documents cannot run VBA code by default (security level = high), and so you must lower the security level
for VBA to work.

c.	 If the security level is set to High, change it to Medium or Low. The differences between the settings are

listed by the table below:

VBA Setting	 Meaning						

High		 All VBA routines are prevented from operating; default.
Medium		 BricsCAD asks if you wish to run each VBA routine.
Low		 All VBA routines are run, without question

.

d.	 After you change the security level in this dialog box, you must restart BricsCAD with the Quit command

or by using File | Exit.

2.	 With VBA enabled, you can now open its programming environment. From the Tools menu, choose VBA, and

436    Customizing BricsCAD V20

then choose Visual Basic for Applications. Notice the VBA programming environment.

3.	 Code is written in modules — a form that is initially blank, into which you type in the code. To start a new

module, from the Insert menu, choose Module. Notice that a blank window appears, as shown below.

4.	 Enter the following code into the module. (This is the same line drawing code you saw earlier.)
	 Sub Using_the_SendCommand()

	 ThisDrawing.SendCommand "line 1,1 2,2 1,2 c "

	 End Sub

5.	 You now have enough code to execute a program. Click the Run button, which you find on the toolbar.

	 23  Dabbling in VBA    437

	 Success! Notice that BricsCAD draws a triangle. If the routine fails to run, check for these problems:

•	 Is security is set to High or Medium?

•	 Does the code contain spelling errors?

You can use SendCommand to draw and edit entities, and to change viewpoints with commands
like Zoom and Pan. You can use it to insert blocks, change properties, and plot drawings. Just be
careful that you enter the options of commands correctly; coordinates and the names of options
are particularly fussy.

DISPLAYING MESSAGES
Displaying messages in dialog boxes is as easy as using this code with the MsgBox function:
	 MsgBox "The drawing border is complete."

1.	 Add the line to the code in the VBA editor:

438    Customizing BricsCAD V20

2.	 And then click the Run button again. You should see a dialog box in BricsCAD that looks like this:

Now that is much, much easier than coding a dialog box in LISP with DCL!

Constructing Dialog Boxes
Speaking of dialog boxes, VBA includes an interactive dialog box construction kit called the “user
form.” Let’s take a look at how it works.

To start a new user form, follow these steps:

1.	 In the Project palette, right-click Module1.

2.	 From the shortcut menu, choose Insert, and then choose Userform.

	 Notice the gray window filled with a grid of dots. This is where you design dialog boxes.

	 Adjacent to the form is the Toolbox. It contains the elements that make up dialog boxes — known as “con-

trols” in the correct VBA jargon. You will probably recognize many of the controls, such as text entry box,

check box, and radio button.

3.	 To place a control, choose one from the Toolbox, and then position it in the user form. For example, to add

a check box, follow these steps:

a.	 In the Toolbox, click the check box item.

	 23  Dabbling in VBA    439

b.	 In Userform1, click anywhere. Notice that the check box is placed with generic text that reads "Check-

box1."

c.	 To edit the text or any other property of the check box, glance over at the Properties palette. (If it is not

visible, choose Properties Window from the View menu; if necessary, click the Categorized tab.) Notice

the name of the control, plus a ton of other properties — the choices can become quite overwhelming.

d.	 You have written some code and you have drawn a simple dialog box. To connect the check box with

the VBA code, choose the Select Objects tool from the Toolbox, and then double-click the check box

control.

	 Notice that another module window opens, into which you can enter code — something I won’t detail

at this point.

We will look at the code-dialog box link in greater detail later in this chapter. First, though, an
introduction to how VBA really works.

440    Customizing BricsCAD V20

BricsCAD V20 Automation Object Model
Source: https://www.bricsys.com/bricscad/help/en_US/CurVer/DevRef/index
.html?page=source%2FCOM_ComponentObjectModel.htm

	 23  Dabbling in VBA    441

Object-Oriented Programming

In programming, is more efficient to work with objects. No, not geometric objects, but programming
objects. To keep clear the distinction, I refer to geometric objects as entities.

You had a hint of the object-oriented nature of VBA with the ThisDrawing.SendCommand piece
of code: the SendCommand function is instructed to operate on the ThisDrawing object, which is
the current drawing. You can add objects to ThisDrawing, such as ModelSpace to ensure the com-
mands are executed in model space instead of paper space:
	 ThisDrawing.ModelSpace.SendCommand()

Notice the dots (.) that connects them, much like the dot in the dotted pairs used by LISP to access
entity data. VBA is premised upon object orientation, where everything in BricsCAD is organized
as objects and according to a strict hierarchy. Technically, this is known as "exposing the BricsCAD
database" through Microsoft’s Common Object Model (COM).

COMMON OBJECT MODEL
On the facing page is a very important figure: it is a diagram of the object model in BricsCAD. (It
changes from release to release as new objects are introduced.) The chart shows how entities
relate to objects:

ÐÐ Entities are in found model or paper space, or in blocks.

ÐÐ Model/paper space and blocks are found in documents.

ÐÐ Documents (drawings) are found in the application (BricsCAD).

As an alternative to the diagram, you can use the Object Browser found in BricsCAD’s VBA program-
ming environment, described next.

OBJECT BROWSER
The object browser lists all of the objects that VBA can access in BricsCAD. To use the object browser,
follow these steps:

1.	 From the View menu, choose Object Browser. Notice the Object Browser palette.

442    Customizing BricsCAD V20

2.	 In the All Libraries droplist, choose BricsadDb. (Db is short for database.)

3.	 Scroll down to AcadLine. This is the BricsCAD line entity, but it is named acadline to maintain compatibility

with VBA applications programmed in AutoCAD.

4.	 On the right, notice all the properties, methods, and events that are available for line entities. I’ve detailed

them in the following section.

5.	 At the bottom is helpful info. As the cursor rests on a member, a brief description is provided, along with a

link to the parent.

	 The figure below shows the information provided for Length:

ÐÐ Length is a property that specifies the length of the current line.

ÐÐ It is a double variable (double accuracy floating point).

ÐÐ Is is read-only, which means programmers and users cannot edit the value.

ÐÐ It is a member of BricsCADDb.AcadLine.

By now, you might realize that the Property palette reports the values stored by BricsCADDb for
all entities in the drawing. Let’s take a closer look at all that a line object entails.

TIPS  Rename the buttons and text boxes so that the names describe what they do. For instance, rename
the OK button as btnOK; rename the Last Point text box as txtLastPoint, and so on.

If the font size and style in the Code window are too small, you can change them. From the Tools menu,
choose Options. Select Editor Format, and then choose a different font size and/or font name.

The VBA code editor uses color to highlight different type of code:
	 Green text		 Comments
	 Black text		 Normal code
	 Blue text	 	 VBA keywords
	 Red text	 	 Errors in the syntax
	 Yellow highlight	 Execution points
	 Brown highlight	 Breakpoints

	 23  Dabbling in VBA    443

LINE ENTITY
The line entity is created with the AcadLine method in model or paper space, and in a block:

	 ModelSpace.AddLine adds a line to model space.

	 PaperSpace.AddLine adds a line to the current layout tab.

	 Block.AddLine adds a line to the specified block, dynamic block, or xref block.

Lines have properties, methods, and events:

ÐÐ Properties affect the geometry and look of the line.

ÐÐ Method refers to the ways in which lines can be edited.

ÐÐ Events refers to the manner in which entities report that they’ve been changed.

Below, I’ve listed all properties, methods, and events for line entities. The list gives you an idea
of the richness (or, complexity) of the access you have to the internals of BricsCAD, the richness
provided by the object model through VBA.

Properties

Lines can have the following properties. Some of these will be familiar to you; others will be new.

Properties		 Meaning							

Geometric Properties
Angle 			 Angle in radians from the x-axis measured counterclockwise.
Delta 			 Delta-x, -y, and -z values, from one endpoint to the other.
Length 		 Length of the line.
Normal 		 Normal to the line.
EndPoint 		 X,y,z-coordinate of the line’s end point.
StartPoint 		 X,y,z-coordinate of the start point.	

Entity Properties
Hyperlinks 		 Embedded hyperlink.
Layer 			 Layer name.
Linetype 		 Linetype name.
LinetypeScale 		 Linetype scale.
Lineweight 		 Lineweight width.	
Material 		 Material name (used for rendering).
PlotStyleName 		 Plot style name, if enabled.
Thickness 		 Thickness, in the z-direction.
TrueColor 		 Color.
Visible 		 Visibility, independent of layer setting.

Other Properties
Application 		 Specifies the BricsCAD application.
Document 		 Specifies the drawing.
Handle 		 Specifies the entity identification number.
HasExtensionDictionary 	 Reports whether the line has an extension dictionary.
ObjectID 		 Alternative method of obtaining the entity id number.
OwnerID 		 Reports the ObjectID of the parent object.

444    Customizing BricsCAD V20

Methods
The line can be edited with the following methods:

Method		 Meaning						

Entity Editing
ArrayPolar 		 Creates a polar array of the line.
ArrayRectangular 		 Creates a rectangular array.
Copy 			 Copies the line.
Delete 			 Erases the line.
Mirror 			 Mirrors the line.
Mirror3D 		 Mirrors the line in 3D.
Move 			 Moves the line.
Offset 			 Creates an offset copy of the line.
Rotate 			 Rotates the line.
Rotate3D 		 Rotates the line in 3D.
ScaleEntity		 Resizes the line.
TransformBy 		 Moves, scales, and/or rotates the line.

Other Method:
GetBoundingBox 		 Reports the coordinates of the rectangle that encompasses the line.
GetExtensionDictionary 	 Returns the line’s extension dictionary.
GetXData 		 Returns the line’s extended entity data.
SetXData 		 Stores extended entity data in the line.
IntersectWith 		 Returns coordinates where line intersects other objects.
Highlight 		 Highlights the line.
Update 		 Regenerates the line.

Events
When entities are changed, they trigger events. For lines, there is just one event. The Modified
event is triggered whenever a property is set, even when the new value equals the current one.

Events are prevented from triggering while modal dialog boxes are open. (A modal dialog box is
one that must be dismissed before you can continue working in BricsCAD; ie, most dialog boxes.)

Dialog Box with Code

In an earlier chapter, I showed you how to construct a dialog box using DCL, and then add the LISP
code to make it work. The dialog box looked like this:

The dialog box displays the current value of three system variables:

ÐÐ Last point reports the current value of the LastPoint system variable.

ÐÐ Last angle reports the value of LastAngle (read-only).

ÐÐ Last prompt reports the value of LastPrompt (read-only).

	 23  Dabbling in VBA    445

Title of the dialog box

OK button to exit dialog box

Names of system variables
and their values

Let’s repeat the tutorial, this time using VBA to do both jobs done separately by DCL and LISP be-
fore – designing the dialog box and writing-running the code.

DESIGNING THE DIALOG BOX
Dialog boxes are designed with the VBA programming environment, as follows:

1.	 Start BricsCAD, and then use the Tools | VBA | Visual Basic for Applications command to open the VBA pro-

gramming environment.

2.	 Start a new Userform. (From the Insert menu, choose UserFrom.) Notice that VBA creates a generic dialog

box named UserForm1.

3.	 Change the name on the title bar by following these steps:

a.	 Open the Properties palette. (From the View menu, choose Properties Window.)

b.	 Scroll down to Caption, and then change "UserForm1" to Last Input. As you type, notice that the title

bar of the dialog box updates at the same time.

4.	 The bulk of our new dialog box consists of three text input boxes. The first one is constructed like this:

446    Customizing BricsCAD V20

a.	 In the Toolbox, choose the TextBox control.

b.	 Click anywhere in the center of the form. Notice the text entry box appears, but it lacks a text prompt

for the user, such as "Last Angle:" You add the text a little later on.

5.	 In BricsCAD, the LastAngle system variable is read-only. This means that users can view the value but not

change it. Text boxes that cannot be edited by users are traditionally colored gray. Here is how to make the

text box read-only and gray:

a.	 Ensure the text box is selected (has grips, as illustrated above).

b.	 In the Properties palette, change the value of BackColor (found in the Appearance section) to Inactive

Title Bar.

	 “Inactive Title Bar” is an enum, a preset value in VBA, kind of like pi in LISP. (Enum is short for “enumer-

ated.”) Should the user change the colors of Windows’ user interface, the background color of this text box

will also change.

	 23  Dabbling in VBA    447

6.	 To add the prompt, use the Label tool, as follows:

a.	 Choose the Label tool from the Toolbox.

b.	 Click and drag a rectangle in front of the text box. If necessary, drag the label into position.

c.	 Backspace over the generic "Label1" text, replacing it with Last Angle:

d.	 To right justify the text, change the value of TextAlign property to 3 (fmTextAlignRight).

TIP  You can drag dialog box elements with the cursor, but it tends to jump to the grid dot spacing. To
fine tune the location of an element, use the Position section of the Properties palette.
	 Change the value of Top to move the element up and down, Left to move horizontally. The
values represent the number of pixels from the upper left corner of the dialog box.

7.	 You can create the other two text input boxes through copy and paste:

a.	 Use the cursor to select both elements. Here are two ways to do it:

	 •  You can drag a rectangle around both of them.

	 •  Alternatively, you can choose one, hold down the Ctrl key, and then choose the other.

b.	 Press Ctrl+C to make a copy (stored in the Clipboard).

448    Customizing BricsCAD V20

c.	 Press Ctrl+V to paste the copy in the dialog box. The copies are pasted right on top of the originals,

unfortunately. This means you need to move one of them, following the pasting.

d.	 Separate the overlapping elements by dragging the copies above the originals.

8.	 Change the properties of the new pair of text input elements:

•	 Change text label to Last Point.

•	 Change BackColor of the text box Window Background (white), because the value of the LastPoint

system variable can be changed by the user.

9.	 Edit the wording for the Last Prompt field. Keep the background color of the Last Prompt text box gray,

because the LastPrompt system variable cannot be edited by users.

10.	 It is quite likely that the elements don’t line up perfectly. VBA can align them for you, as follows:

a.	 Select the three text elements, and then right-click.

b.	 From the shortcut menu, choose Rights. Notice that they now line up perfectly.

	 23  Dabbling in VBA    449

c.	 Repeat for the three input boxes.

11.	 The final elements are the OK and Cancel buttons. From the Toolbox, drag the Command Button element

onto the user form.

  
Left: Selecting the CommandButton tool, and then... right: ...dragging it onto the form.

12.	 Change its Caption property to OK.

13.	 Repeat to add the Cancel button.

The design of the dialog box is complete. The next stage adds code that makes the dialog box operate.

If you wish, you can fine tune the look of the dialog box by making the OK button narrower, adding
a frame around the text input boxes, changing colors of elements, and so on. I find it interesting
that I prefer working with DCL, because BricsCAD takes care of lining up dialog box elements so
that it looks good — without all the manual tweaking required by VBA.

450    Customizing BricsCAD V20

ADDING THE CODE
With the dialog box design in place, let’s start working on the code. In LISP, a single routine handles
everything that happens in the dialog box; in contrast, VBA uses many snippets of code. One snip-
pet handles the Cancel button, another the OK button, another handles the value displayed by the
Last Point text box, and so on.

You don’t need to worry about linking code snippets to dialog box elements. VBA does that for
you. When the user clicks on a text box or the OK button, VBA runs the correct snippet of code
automatically.

Clicking Cancel
To link the Cancel button to a VBA code snipped, follow these steps:

1.	 Double-click the Cancel button. Notice that a module-like form appears, and that it is partially filled out.

2.	 Add the command for closing the dialog box:
	 End

3.	 You’re done!

4.	 Well, that’s not quite all. You still need to test that Cancel button actually works. Here’s how:

a.	 On the VBA toolbar, click the Run button. Notice that the dialog box appears in BricsCAD.

b.	 Try clicking an element other than the Cancel button, such as the OK button. Nothing happens, because

there is no code tied to it.

c.	 Click Cancel. The dialog box should disappear. Yay, it works!

	 23  Dabbling in VBA    451

QUICK SUMMARY OF VBA DATA TYPES

Data Type 	Comment	 Range From	 To				

Byte 	 ...	 0 			 255

Boolean 	 ...	 True 			 False

Integer 	 ...	 -32,768 		 32,767

Long	 Long integer	 -2,147,483,648 		 2,147,483,647

Single	 Single-precision floating-point	 -3.402823E38 		 -1.401298E-45 (negative Values)
		 1.401298E-45 		 3.402823E38 (positive values)

Double	 Double-precision floating-point	 -1.79769313486231E308 	 -4.94065645841247E-324 (negative values)
		 4.94065645841247E-324 	 1.79769313486232E308 (positive values)

Decimal 	 ...	 +/-79,228,162,514,264,337,593,543,950,335 (no decimal point)
		 +/-7.9228162514264337593543950335 (28 decimal places)
		 +/-0.0000000000000000000000000001 (smallest nonzero number)

Date 	 ...	 January 1, 100		 December 31, 9999

Currency	 Scaled integer	 -922,337,203,685,477.5808	 922,337,203,685,477.5807

String 	 Variable-length	 0 			 approximately 2 billion characters
	 Fixed-length	 1			 approximately 65,400 characters

Variant	 Numbers	 Any numeric value up to a double
	 Characters	 Same as variable-length string

Object 	 ...	 Any object reference

User-defined	 ...	 Same range as its data type.

QUICK SUMMARY OF VBA DATA TYPE RETURN VALUES

Constant 	 Value 	 Description 				

vbEmpty 	 0 	 Empty or uninitialized
vbNull 	 1 	 Null or no valid data
vbInteger 	 2 	 Integer
vbLong 	 3 	 Long integer
vbSingle 	 4 	 Single-precision floating-point number
vbDouble 	 5 	 Double-precision floating-point number
vbCurrency 	 6 	 Currency value
vbDate 	 7 	 Date value
vbString 	 8 	 String
vbObject 	 9 	 Object
vbError 	 10 	 Error value
vbBoolean 	 11 	 Boolean value
vbVariant 	 12 	 Variant (array)
vbDataObject 	 13 	 Data access object
vbDecimal 	 14 	 Decimal value
vbByte 	 17 	 Byte value
vbUserDefinedType 	 36 	 Variant (user-defined types)
vbArray 	 8192 	 Array

452    Customizing BricsCAD V20

LastInput.Dvb

With the introduction to VBA programming behind you, let’s carry on and examine a fully-
coded program. Below is the Last Input dialog box, and on the facing page is the VBA code
for LastInput.Dvb. In the following pages, I comment on parts of the code.

The main part of the project is shown in cyan; other modules are like subroutines that sup-
port the main module. I’ve added lines to visually separate modules, and I have color coded
module names so that you can cross-reference them.

The following VBA code was developed by Ferdinand Janssens, programmer at Bricsys.

QUICK SUMMARY OF VBA STRING MANIPULATION

Keyword, Operator	 Comment		

Asc, Chr 	 Accesses ASCII and ANSI values.
Format, Lcase, Ucase 	 Converts to lower- or uppercase.
Format	 Formats strings.
InStr, Left, LTrim, Mid, Len	 Finds lengths of strings.
LSet, Rset 	 Justifies string left or right.
Option Compare	 Sets string comparison rules.
Right, RTrim, 	 Trim Manipulates strings.
Space, String 	 Creates strings of repeating characters.
StrComp	 Compares two strings.
StrConv	 Converts strings.
&	 Concatenates strings.

	 23  Dabbling in VBA    453

Option Explicit

Private Sub txtLastAngle_Change()
End Sub

Private Sub txtLastPrompt_Change()
End Sub

Private Sub UserForm_Initialize()
 UpdateForm
End Sub

Private Sub btnUpdate_Click()
 UpdateForm
End Sub

Private Sub btnOK_Click()
 Unload Me
End Sub

Private Sub UpdateForm()
 Dim vLastpoint As Variant
 vLastpoint = ThisDrawing.GetVariable("LASTPOINT")
 Me.txtLastPoint.Text = PointToString(vLastpoint)
 Me.txtLastAngle.Text = AngleToString(ThisDrawing.GetVariable("LASTANGLE"))
 Me.txtLastPrompt.Text = TrimLF(ThisDrawing.GetVariable("LASTPROMPT"))
End Sub

Private Function PointToString(vIn As Variant) As String
 Dim sPt As String: sPt = vbNullString
 Dim iPrecision As Integer
 iPrecision = ThisDrawing.GetVariable("LUPREC") ‘ LUPREC holds the current Lin-
ear Unit precision (see Setting Dialog)
 If VarType(vIn) > vbArray Then
 sPt = StringFromValueFixedDecimal(vIn(0), iPrecision) & ", "
 sPt = sPt & StringFromValueFixedDecimal(vIn(1), iPrecision) & ", "
 sPt = sPt & StringFromValueFixedDecimal(vIn(2), iPrecision)
 End If
 PointToString = sPt
End Function

Private Function StringToPoint(sIn As String) As Variant
 Dim sCoords() As String: sCoords = Strings.Split(sIn, ",")
 Dim tmpPt(0 To 2) As Double
 If UBound(sCoords) = 0 Then
 tmpPt(0) = Val(sCoords(0))
 ElseIf UBound(sCoords) = 1 Then
 tmpPt(0) = Val(sCoords(0))
 tmpPt(1) = Val(sCoords(1))
 ElseIf UBound(sCoords) = 2 Then
 tmpPt(0) = Val(sCoords(0))
 tmpPt(1) = Val(sCoords(1))
 tmpPt(2) = Val(sCoords(2))
 End If
 StringToPoint = tmpPt
End Function

Private Sub txtLastPoint_BeforeUpdate(ByVal Cancel As MSForms.ReturnBoolean)
 Dim ptModif As Variant
 ptModif = StringToPoint(Me.txtLastPoint.Text)
 ThisDrawing.SetVariable "LASTPOINT", ptModif

454    Customizing BricsCAD V20

Conversion Routines

VBA was not designed with CAD in mind, and so it does not easily handle concepts unique to vector
drawings, such as the processing of 2D and 3D points. Just as in LISP, VBA must separate coordinate
triplets, and then recombine them as strings.

Two of the conversion routines in Mr Janssens’s program are useful for any VBA programming with
BricsCAD. These are as follows:

•	 PointToString coverts 3D points (x, y, z coordinates) to strings, such as 3,2,1 to "3","2","1".

•	 StringToPoint coverts strings back to 1D, 2D, or 3D coordinate points, such as "3","2","1" to 3,2,1.

Frankly, I am surprised at the amount of code VBA needs for adding and removing quotation marks
from the single, most common, type of CAD data. The good news is that once you write these two
routines, you can use them over again in your other VBA programs.

Here are descriptions of how they work.

POINTTOSTRING CONVERSION FUNCTION
The PointToString routine adds quotations marks to each coordinate to convert them from real
numbers to strings. For example, 3.4,2,0 becomes "3.4","2","1". It looks like this:
Private Function PointToString(vIn As Variant) As String
 Dim sPt As String: sPt = vbNullString
 Dim iPrecision As Integer
 iPrecision = ThisDrawing.GetVariable("LUPREC")
 If VarType(vIn) > vbArray Then
 sPt = StringFromValueFixedDecimal(vIn(0), iPrecision) & ", "
 sPt = sPt & StringFromValueFixedDecimal(vIn(1), iPrecision) & ", "
 sPt = sPt & StringFromValueFixedDecimal(vIn(2), iPrecision)
 End If
 PointToString = sPt
End Function

 Me.txtLastPoint.Text = PointToString(ptModif)
End Sub

Private Function StringFromValueFixedDecimal(ByVal dVal As Double, ByVal iDecimals As Integer) As
String
 StringFromValueFixedDecimal = VBA.FormatNumber(VBA.Round(dVal, iDecimals), iDecimals)
End Function

Private Function TrimLF(ByVal sVal As String) As String
 TrimLF = VBA.Replace(sVal, vbLf, vbNullString)
End Function

Private Function AngleToString(dRadians As Double) As String
 Dim iAnglePrecision As Integer
 iAnglePrecision = ThisDrawing.GetVariable("AUPREC") ‘ AUPREC holds the current Angular Unit
precision (see Setting Dialog)
 AngleToString = ThisDrawing.Utility.AngleToString(dRadians, acDegrees, iAnglePrecision)
End Function

	 23  Dabbling in VBA    455

QUICK SUMMARY OF VBA PREDEFINED CONSTANTS

Constant	 Value	 Comments				

vbCrLf 	 Chr(13) + Chr(10) 	 Carriage-return, linefeed
vbCr 	 Chr(13) 	 Carriage-return
vbLf 	 Chr(10) 	 Linefeed
vbNewLine 	 Chr(13) + Chr(10) 	 New line character (\n)
vbNullChar 	 Chr(0) 	 Character with value 0
vbNullString 	 0 	 String with value 0; used for external procedures
vbObjectError 	 -2147221504 	 Values greater are user-defined error numbers
vbTab 	 Chr(9) 	 Tab (\t)
vbBack 	 Chr(8) 	 Backspace

(VBA keywords are shown in boldface.)

Let’s examine how this code works, line by line.

Private Function PointToString(vIn As Variant) As String
Private means that the function can be accessed only within this module. This is roughly analogous
to the practice in LISP where variables names are placed after the slash character to make them
local, such as (defun function (/ vaname)).

Function specifies the name, arguments, and code. It is like the defun function in LISP.

	 PointToString is the name of the function.

	 vIn is the name of the argument’s variable (vIn is short for “variant input”). The purpose of
	 this variable is to receive the argument passed to this function when it is processed.

	 As declares the data type of the argument.

		 Variant is the data type, meaning the function is completely flexible when it comes to
		 data types, working with numbers, text, and arrays.

	 As String means that the output of the function is a variable length string.

In summary, this line of code defines a local function named “PointToString” that expects numbers
or text as input, and then returns text.

456    Customizing BricsCAD V20

Dim sPt As String: sPt = vbNullString
Dim is the most common way of declaring variable names. Unlike LISP, VBA needs to know ahead
of time the names of variables and their data types. While to experienced LISP programmers dec-
larations seems like unnecessary extra work, this ahead-of-time declaration is one of the ways that
VBA routines run faster than ones written in LISP.

	 sPt is the name of the variable (sPt is short for “string point”).

	 As is the keyword for declaring data types.

		 String is the data type.

: (colon) indicates the end of a line label. sPt is given its initial value:

	 vbNullString is one of VBA’s predefined constants — just like pi is predefined as 3.1431... in
	 LISP. The value of vbNullString is 0 (not the same as a zero-length string, ""). This is done so
	 that the dialog box initially displays 0 when the LastPoint contains nothing.

In summary, this line of code defines a variable named "sPt" and assigns it the value of 0.

Dim iPrecision As Integer
iPrecision is the name of another variable (short for “integer precision”). Its purpose is to specify
the number of decimal places used by this function.

	 As Integer defines its data type as an integer, because an integer is large enough to hold the
	 value of decimal places, which in BricsCAD ranges from 0 to 8.

In summary, this line of code defines a variable named "iPrecision."

iPrecision = ThisDrawing.GetVariable("LUPREC")
ThisDrawing is VBA’s way of accessing data from the current drawing — without needing to know
its name.

	 GetVariable gets the value of system variables, and it gets the value of the current drawing.
	 This is like using the (getvar) function in LISP.

		 "LuPrec" is the name of the system variable that stores the value of the current linear
		 units precision (as set by the Setting dialog box). LuPrec is a BricsCAD name and has
		 nothing to do with VBA; this means that you can use the same line of code to access the
		 value of any system variable, including those unique to BricsCAD.

In summary, this line of code gets the value of system variable LuPrec, and then stores it in iPrecision.

If VarType(vIn) > vbArray Then
If starts the usual if-then decision-making construct found in all programming languages. (If they
have no “if-then” construct, then they are not programming languages.) In this case, if checks the
value of vIn.

	 23  Dabbling in VBA    457

	 VarType is the function that determines the data type of variables. It returns an integer that
	 reports the data type. Once you know the data type, you can perform other work on it. In this
	 case, it checks the data type of vIn.

		 > is the greater than function.

			 vbArray is another VBA constant; this one carries the value of 8192. However,
			 array types always return a value larger than 8192 in order to report the type of
			 the array. An array can consist of numbers, text, Booleans, and so on. In our
			 program, the array is the coordinate triplet, such as 1,2,3.

In summary, this line of code checks to see if the data type of vIn is an array. More specifically, it
asks, “Is the value of vIn greater than 8192? If so, then it is an array, and processing can continue.”

sPt = StringFromValueFixedDecimal(vIn(0), iPrecision) & ", "
StringFromValueFixedDecimal is a user-defined function that converts a decimal into a string,
and then simulates the number of decimal points. (It is listed a little later in the LastPoint.Dvb pro-
gram.) It expects two arguments: a decimal number and the precision (ie, the number of decimal
points to display).

	 vIn(0) extracts the first value of array vIn. Yup, VBA considers 0 as #1, just as in LISP. If vIn is
	 3.2,2,0, then 3.2 is extracted.

		 iPrecision specifies the number of decimal points. For example, is vIn(0) is 3.2, then this
		 function changes it to "3.2000" (when iPrecision is 4) or to "3", when iPrecision is 0.

			 & is VBA’s function for concatenating (linking together) strings — same as the
			 StrCat function in LISP.

				 ", " is concatenated to the string, resulting in sPt holding the value of
				 "3.2000, ".

In summary, this line of code converts the first element of the coordinate array into a string with a
fixed number of decimal points, and then adds a comma and space.

sPt = sPt & StringFromValueFixedDecimal(vIn(1), iPrecision) & ", "
This line of code is identical to the one above, but with two differences:

sPt = sPt & concatenates the existing value of sPt ("3.2000, ") with the second value extracted
from the array.

StringFromValueFixedDecimal(vIn(1) extracts the second element from the array.

In summary, this line of code converts the second element of the coordinate array into a string, and
then concatenates it to the first element. sPt now holds "3.2000, 2.0000, ". You can start to see how
the numerical array is being converted, piece by piece, to a string array.

458    Customizing BricsCAD V20

sPt = sPt & StringFromValueFixedDecimal(vIn(2), iPrecision)
The process repeats, with sPt now holding the string "3.2000, 2.0000, 0.000".

End If
End indicates the end of a section.

	 If indicates the end of the if-then statement. If vIn hadn’t been an array, then the routine
	 would have skipped the previous three lines of code, and jumped to here. Can you guess the
	 value sPt would hold in this case?

PointToString = sPt
The value of sPt is assigned to PointToString, where it can be accessed by any other line of code.
(If vIn had not been an array, the value of sPt would be 0.)

End Function
End specifies the end of the module.

	 Function indicates that the function has come to an end. Because this is a subroutine, the
	 value of PointToString is now returned to the main part of the code, where it is used by this
	 statement:
	 Me.txtLastPoint.Text = PointToString(vLastpoint)

STRINGTOPOINT CONVERSION FUNCTION
The StringToPoint routine removes quotations marks from each string to convert it to a real num-
ber. For example, "3.4, 2, 0" becomes 3.42,0. Some of the code will be familiar to you from above.
Private Function StringToPoint(sIn As String) As Variant
 Dim sCoords() As String: sCoords = Strings.Split(sIn, ",")
 Dim tmpPt(0 To 2) As Double

 If UBound(sCoords) = 0 Then
 tmpPt(0) = Val(sCoords(0))

 ElseIf UBound(sCoords) = 1 Then
 tmpPt(0) = Val(sCoords(0))
 tmpPt(1) = Val(sCoords(1))

 ElseIf UBound(sCoords) = 2 Then
 tmpPt(0) = Val(sCoords(0))
 tmpPt(1) = Val(sCoords(1))
 tmpPt(2) = Val(sCoords(2))

 End If

 StringToPoint = tmpPt

End Function

 Let’s examine what some of this code does:

	 23  Dabbling in VBA    459

Dim sCoords() As String: sCoords = Strings.Split(sIn, ",")
Dim sCoords() As String defines variable sCoords (sort for "string coordinates), and assigns a
data type of String.

Split splits the string into a one-dimensional array with the specified number of substrings.

	 "," specifies the delimiter, which tells Split where to make the split. In this case, a string like
	 "3.4, 2, 0" becomes "3.4", "2", and "0".

If UBound(sCoords) = 0 Then
UBound reports the size of an array. It is useful in determining whether the function is dealing
with 2D coordinates (a 2-element array) or 3D, a three-element array.

tmpPt(0) = Val(sCoords(0))
Val converts numbers in strings as a numeric value. In short, the "3.4" becomes 3.4.

This subroutine is used by the txtLastPoint_BeforeUpdate function.

LOADING AND RUNNING LASTINPUT.DVB
You can download the LastInput.Dvb file from my Dropbox account at
https://www.dropbox.com/s/l3maokh191wke1h/lastinput.dcl?dl=0.

Follow these steps to load the program:

1.	 Start BricsCAD.

2.	 From the Tools menu, select VBA, and then choose Load Project.

3.	 In the Open dialog box, choose "LastPoint.Dvb", and then click Open. The program is now loaded into Brics-

CAD.

	 (If the Security dialog box appears, choose Low, and then click OK.)

To run the program, follow these steps:

1.	 From the Tools menu, select VBA, and then choose Macros.

2.	 In the Run BricsCAD VBA Macro dialog box, choose "Module1.main".

3.	 Click Run.

	 Notice that the Last Input dialog box appears. If the drawing is brand-new (no objects drawing), then the

fields report 0.

4.	 To see the dialog box at work, start the Line command, and then draw a few lines. (This dialog box is non-

model, meaning it can stay open even as you execute other commands in BricsCAD.)

5.	 Click Update to see the dialog box report the values of the last point, angle, and prompt.

6.	 To change the value of Last Point, highlight the coordinates, and then enter different values for x, y, and z.

7.	 When done, click OK. The dialog box disappears.

8.	 Press Esc to cancel the Line command.

TIP  To include a VBA project in a toolbar or menu macro, use the -VbaRun command, and then provide
the macro name as the argument.

460    Customizing BricsCAD V20

QUICK SUMMARY OF VBA VARIABLE DECLARATIONS

Declaration	 Comments							

Dim		 Default method of declaring variables:
		 • When Dim appears within the procedure, the variable is available
		 only within the procedure.
		 • When Dim appears in the declarations section of the module, the
		 variable is available to all procedures within the module but not to
		 other modules in the project.
Public		 Makes variables available to all procedures in all modules in the project.
Private 	 Restricts variables for use only by procedures in the same module.
Static 		 Variables retain their values between calls.
Option Explicit 	 All variables must be explicitly declared within the module.

QUICK SUMMARY OF VBA SHORTCUT REFERENCES

Term		 Comments							

This		 Refers to the current or active BricsCAD document.
Me		 Makes variables available to every procedure in a class module. Used when a class
		 has more than one instance, because Me refers to the instance of the class in the
		 code currently being executed.

PART IV

Appendices

Notes

APPENDIX A

Command Summary

THIS APPENDIX, YOU CAN REFERENCE THE NAMES OF OVER 900 COMMANDS IN BRICSCAD.
They are listed alphabetically by name, as well as in groupings of common commands, as follows:

ai- commands				

bim- (building information modeling) commands	 	 	

bm- (BricsCAD mechanical) commands	

Civil commands (new to V20)	

Cloud- commands (ex-Chapoo commands)

Dim- (dimension) commands	 	

dc- (dimensional constraint) commands	

dm- (direct modeling) commands	

gc- (geometric constraint) commands	

Layer Commands			

sm- (sheet metal) Commands	 	

VBA (Visual Basic for Applications) commands	 	 	

ViewBase commands			

Commands with a hyphen prefix, such as -Color, are ones that run at the command prompt, and
have a complimentary command, such as Color, that displays a dialog box.

Command names new in V20 are shown in blue.

464    Customizing BricsCAD V19

A Commands
About displays information about the program.

AcisIn imports 3D solids in SAT format (SAT is short for “save as text”).

AcisOut exports 3D solids and surface entities in SAT format.

AddInMan displays the VBA COM Add-In Manager dialog box.

AddSelected creates a new entity of the same type as an existing entity.

Align aligns entities with other entities in 2D and 3D space.

AlignSpace adjusts viewport angle, zoom factor, and pan position based on alignment points specified in model space and paper
space; operates in paper space only.

AniPath makes movies from views generated by a camera moving through 3D scenes.

AnnReset resets all scale representations to the entity’s original positions

AnnUpdate updates annotative scale factors to match updates made with Style and DimStyle commands.

Aperture sets selection area for snapping to entities.

Apparent toggles Apparent intersection entity snap; snaps to the intersections of entities, even when they only appear to intersect
in 3D space.

AppLoad loads DRX, LISP, and SDS applications to run inside BricsCAD; Mac and Linux load only LISP and SDS.

Arc draws arcs.

Area determines the area and perimeter of closed 2D objects; the area and length of open polylines and splines as if they were
closed; the lengths only of lines, sketches, arcs, and elliptical arcs; and the areas of faces of 3D objects.

Array and -Array creates dynamic polar, path, and rectangular arrays of entities.

ArrayClassic runs the dialog box-based version of the Array command.

ArrayClose and -ArrayClose end the array editing session.

ArrayEdit edits entities and source entities of arrays.

ArrayEditExt edits entities in arrays.

ArrayPath distributes entity copies evenly along a path into multiple rows and levels.

ArrayPolar distributes entity copies evenly in a circular pattern about a center point or axis of rotation, using multiple rows and
levels.

ArrayRect distributes entity copies into any number of rows, columns, and levels.

AttachmentsPanelOpen opens the Attachments panel for managing Xref, Raster Image, PDF, and Pointcloud attachments.

AttachmentsPanelClose closes the Attachments panel.

AttDef and -AttDef defines attributes for blocks.

AttDisp toggles the display of attributes through all, none, or those normally visible.

AttEdit edits the values and properties of attributes.

AttExt and -AttExt exports data from attributes to text files.

AttRedef redefines blocks and updates associated attributes.

AttSync synchronizes attribute definitions in all references to a specified block definition.

Audit repairs open drawings in case of data corruption.

AutoComplete sets the options for autocomplete mode on the command line.

appendix A  Command Summary    465

Ai Commands
Ai_Box draws 3D boxes as mesh surfaces.

Ai_CircTan draws a circle tangent to three entities.

Ai_Cone draws 3D cones as mesh surfaces.

Ai_Cylinder draws 3D cylinders as mesh surfaces.

Ai_DeSelect unselects all selected entities.

Ai_Dish draws 3D dishes as mesh surfaces.

Ai_Dome draws 3D domes (half-spheres) as mesh surfaces.

Ai_DrawOrder changes the display order of overlapping entities.

Ai_Fms switches to the first layout tab and enters model space of the first viewport.

AiMleaderEditAdd adds leader lines to multi-leaders.

AiMleaderEditRemove removes leader lines from multi-leaders.

Ai_Molc makes the layer current of the selected entity (short for “make object layer current”).

Ai_MSpace switches to model tab.

Ai_PSpace switches to the first layout tab.

Ai_Pyramid draws 3D pyramids as mesh surfaces.

Ai_SelAll selects all non-frozen entities in the current space, like Ctrl+A.

Ai_Sphere draws 3D spheres as mesh surfaces.

Ai_TileMode1 sets TileMode variable to 1 and then switches to model tab.

Ai_Torus draws 3D tori as mesh surfaces.

Ai_Wedge draws 3D wedges as mesh surfaces.

B Commands
Background displays the Background dialog box for creating background colors and images in shaded modes and renderings.

Base changes the drawing’s insertion point when when it is inserted into other drawings.

BAttMan manages the attributes of block definitions (short for Block Attribute Manager).

BClose closes the Block Editor

BEdit and -BEdit open the Block Editor environment

BHatch and -BHatch fills closed areas with repeating patterns, solid colors, or gradients.

Blade opens the LISP editing environment

BlipMode enables and disables display of marker blips.

Block and -Block groups entities into blocks (symbols).

Blockify converts entities to blocks to save space and increase speed

BmpOut exports the current viewport as a BMP (bitmap) file.

Boundary and -Boundary draws a polyline that forms a boundary around the inside closed areas.

Box draws three-dimensional solid boxes.

Break removes portions of entities.

Browser opens the default Web browser.

466    Customizing BricsCAD V19

BIM Commands
(Available as an add-on to the Platinum edition only; bim = building information modeling)

bimAddEccentricity controls relative positions of the axes in linear solids.

bimApplyProfile applies profiles to linear entities and linear solids.

bimAttachComposition attaches BIM compositions to solids.

bimAttachSpatialLocation locates the drawing in mapping references.

bimClassify classifies an entity as a building element with a name and an internal ‘guid’ (globally unique identifier).

bimCopy copies entities normal (at 90 degrees) to the selected face.

bimCurtainWall creates curtain walls made of planar quadrilateral panels from free-form surfaces.

bimDecompose decomposes composition-based solids into separate plies.

bimDisplayComposition toggles the display of compositions on and off.

bimDrag drags faces of solids; when dragging major faces, it preserves connections with minor faces; when dragging minor faces,
it optionally connects minor faces to major faces of other solids.

bimFlip flips the starting face from which the layers of a composition are set out.

bimFlowConnect connects linear solids.

bimGrid creates rectangular and radial grids with automatically-applied labels.

bimIfy automatically classifies and spatial locates the entire bim model.

bimInsert and -bimInsert insert windows and doors in solids.

bimLinearSolid creates chains of linear solids.

bimList list names and properties of BIM entities in the current drawing.

bimMultiSelect selects one or more linear solids with coplanar and/or parallel axes based on the initial solid or face selected.

bimPatch reserves an of a BIM model for editing with the RefEdit command.

bimProfiles displays the Profiles dialog box for creating and editing profiles.

bimProjectInfo displays the BIM Project Info dialog box for specifying project library databases.

bimPropagate (replaces bimSuggest) maps details from selected solids to all similar solids, as well as on grids.

bimPropagateEdges propagates along the edges of planar solids, such as railings.

bimPropagateLinear propagates connections to linear elements,such as connections to walls and slabs.

bimPropagatePattern propagates a single element (such as a switch) to multiple locations and grids.

bimPropagatePlanar propagates connections to planar elements, such as walls, slabs, and roofs.

bimProperties displays the BIM Properties dialog box for specifying and editing properties of bim projects.

bimQuickDraw draws rooms and stories from rectangles and L-shapes.

bimRecalculateAxis recalculates the axes of structural elements back to their centroids.

bimRoom defines room areas with markers.

bimRoomBoundingElements determines which elements (walls, floors, etc) determine bounds of rooms.

bimSchedule generates linked schedule tables after analyze building elements in BIM models.

bimSection creates BIM section entities.

bimSectionOpen opens the drawing file related to a BIM section entity; or the 3D BIM model related to a BIM section drawing.

bimSectionUpdate updates and exports BIM sections.

appendix A  Command Summary    467

bimSetReferenceFace controls the layout of plies through reference and opposing faces.

bimSplit splits segmented solids into separated solids automatically; splits solids using cutting faces.

bimStair creates stairs between two floors (as a rectangular parametric array).

bimStretch stretches BIM entities.

bimStructuralConnect connects linear solids.

bimTag tags BIM sections.

bimUpdateRoom updates data about the selected room.

bimUpdateThickness re-applies the overall thickness of a composition to the solid.

bimWindowCreate replaces closed entities with parametric window entities; displays the choose window style dialog box.

bimWindowPrint prints a specified area of the BIM model.

bimWindowUpdate updates openings made by windows or doors in solids in case the opening did not updated correctly
automatically.

ClipDisplay toggles the clipped display property of a section plane or a BIM section entity.

BricsCAD Mechanical Commands
(Available in Platinum edition only; bm = BricsCAD mechanical)

bmBalloon associates balloon with assembly components in Model space and in generated views in layouts.

bmBom inserts bill of material (BOM) tables in the current drawing.

-bmCreateComponent creates a component from a selection set; add it to the library.

bmDependencies lists all files, containing component definitions inserted in the assembly, in the command window.

bmDissolve dissolves a mechanical component inserted in the current drawing.

bmExplode creates a block of an exploded representation of an assembly.

bmExplodeMove allows users to created exploded representations of assemblies.

bmExternalize converts local components to external components.

bmForm creates a new mechanical component and inserts it into the current drawing; if necessary, run bmMech to initialize the
mechanical structure in the current drawing.

bmHardware and -bmHardware insert standard hardware parts as a mechanical component in the current drawing.

bmHide hides the visibility of mechanical components; hidden inserts are taken into account by commands such as bmBom and
bmMassProp.

bmInsert and -bmInsert insert an existing mechanical component as a virtual component into the current drawing.

bmLispGet retrieve variables for blocks and parameters of components.

bmLocalize converts external components to local components.

bmMassProp computes mass properties for the current model using densities assigned to the components (defined by the density
property of the components and subcomponents).

bmMech converts the current drawing into a mechanical component.

bmNew creates a mechanical component as a new drawing file.

bmOpen opens the source drawing of external mechanical components.

bmOpenCopy opens a copy of a component insert as a new drawing.

-bmParameters lists and edits parameters of inserted components.

468    Customizing BricsCAD V19

bmRecover recovers broken mechanical structures.

bmReplace replaces a component insert.

bmShow shows previously hidden mechanical components.

bmUnlink breaks links between components.

bmUnmech converts the current mechanical component into a plain drawing.

bmUpdate reloads all referenced components from external files and updates BOM tables.

bmVStyle applies visual styles to mechanical component inserts.

bmXConvert converts X-Hardware solids in the current drawing to mechanical components.

C Commands
Cal displays the operating system’s Calculator program.

Callout places callouts; can be used only from the SheetSet panel.

Camera changes the viewpoint to perspective.

Center toggles Center entity snap; snaps to the center of circles, arcs, and other circular entities.

CenterDisassociate disassociates center lines and marks from circles and arcs

Centerline places associative center lines on circles and arcs

Centermark places associative center marks on circles and arcs

CenterReassociate reassociates centerlines/marks with circles and arcs

CenterResetresets centerline and mark entities, if moved

Chamfer bevels entities.

Change changes the position and properties of entities: endpoint, color, elevation, layer, linetype, linetype scale, lineweight, and
thickness.

ChProp changes just the properties of entities.

ChSpace moves entities from paper space to model space and vice versa.

Circle draws circles.

CleanScreenOn hides most user interface elements to maximize the drawing area.

CleanScreenOff restores the user interface to its default configuration.

CleanUnsedVariables clears unused variables from memory.

Close exits the current drawing, but not the program.

Color and -Color specifies the color for entities.

CommandLine and CommandLineHide open and close the command bar.

Commands reports the names of all commands supported by the program.

CommunicatorInfo reports the status of the Communicator add-on

ComponentsPanelOpen opens the Components panel for accessing symbols

ComponentsPanelClose closes the Components panel

Cone draws three-dimensional solid cones.

ContentBrowserClose and ContentBrowserOpen close and open the Content Browser panel.

ConvertCtb converts older CBT (color-based plot tables) files to newer STB (style-based plot tables) files.

appendix A  Command Summary    469

ConvertOldLights converts old light definitions to the current format.

ConvertOldMaterials converts old material definitions to the current format.

ConvertPoly converts lightweight polylines to classic polylines (2D polylines) and vice versa.

ConvertPStyles converts drawings to from CTB (color-based plotting) to STB (plot styles).

ConvToMesh converts 3D solids and surfaces to mesh objects

ConvToSolid converts watertight meshes, circles, and closed polylines to 3D solids

ConvToSurface converts 3D solids, open polylines and other entities to 3D surfaces

Copy duplicates entities.

CopyBase copies entities with a specified reference point to the Clipboard.

CopyClip copies entities to the Clipboard.

CopyEData Copies extended entity data from one entity to others.

CopyGuided copies entities along guidelines.

CopyHist copies the command history to the Clipboard.

CopyToLayer copies selected entities to another layer.

CPageSetup edits the page setup of the current layout or model space.

CuiLoad and CuiUnload load and unload CUI and CUIX (user interface customization), MNU (menu), MNS (LISP code), and
ICM (IntelliCAD menu) files.

Customize customizes user interface elements, such as menus, toolbars, and shortcuts.

CutClip copies entities to the Clipboard and deletes the entities.

Cylinder draws three-dimensional solid cylinders.

Civil Commands
(Civil engineering commands are part of Platinum)

Alignment creates horizontal and vertical alignments typically used to design roads.

AlignmentEdit edits horizontal and vertical alignments.

AlignmentView views alignment along TIN surfaces.

AlignmentVInitial creates vertical alignments.

Grading interactively modifies TIN surfaces to create grading effects, such as for roads and foundations.

LandXmlEexport exports the drawing in LandXML format

LandXmlImport imports LandXML files into the current drawing

Tin (triangulated irregular network) imports data from TIN files to create land surfaces, and converts Civil 3D surfaces to the
BricsCAD format

TinEdit adds and removes points, break lines, and boundaries in TIN surfaces.

TinExtract creates a mesh or 3D solid between TIN surfaces or between a TIN surface and elevation.

TinMerge combines two or more TIN surfaces into one.

TinModify deforms and smooths selected TIN surfaces.

TinVolume creates a TIN volume surface between a base and comparison TIN surfaces or an elevation.

470    Customizing BricsCAD V19

Cloud Commands
All Chapoo- commands were renamed Cloud- in V18

CloudAccount reports the status of the 24/7 account at the command bar.

CloudDownload downloads drawings from the 24/7 project to a local folder.

CloudLogoff logs off from the 24/7 project.

CloudLogon logs on to 24/7.

CloudOpen opens a drawing after downloading it from 24/7.

CloudProject opens the 24/7 project in the default browser.

CloudUpload uploads the current drawing to 24/7.

CloudWeb connects to the 24/7 website at https://www.bricsys.com/en-intl/247/.

D Commands
DataExtraction exports entity properties, block attributes and drawing information to CSV (comma separated values) file.

DataLink imports Excel spreadsheets and CSV files as linked table entities

DataLinkUpdate updates the data linked between a table and an external file

DbList lists information about all entities in the drawing (short for “database listing”).

DdAttE edits the values of attributes through a dialog box (short for “dynamic dialog attribute editor”).

DdEdit edits single-line text, multi-line text, attribute definitions, and attribute text (short for “dynamic dialog editor”).

DdEModes sets default values for creating entities (short for “dynamic dialog entity modes”).

DdFilter creates a selection set of the entities selected.

DdGrips specifies the properties of grips through the Settings dialog box.

DdPType specifies the look and size of point entities, through the Settings dialog box (short for “dynamic dialog point type”).

DdSelect specifies the properties for selecting entities, through the Settings dialog box.

DdSetVar displays the Settings dialog box to change the values of variables.

DdSTrack Sets the properties for snap tracking, through the Settings dialog box (short for “snap tracking”).

DdVPoint sets 3D viewpoints or plan view.

DefaultScaleList displays the Scale List Edit dialog box to edit the default scale factors

DesignTable creates new design tables for the Mechanical Browser.

-DesignTableEdit configures, replaces, exports, and deletes design tables at the command line.

Delay delays execution of the next command; for use with scripts only.

DelEData deletes extended entity data from the selected entity (short for “delete entity data”).

DgnImport imports Microstation design files and converts them to entities.

DgnImportOptions opens the Settings dialog box at the DgnImport section.

Dish draws dishes (bottom half-spheres) from polygon meshes.

Dist reports the distance and angle between two points.

Distantlight places distant lights.

Divide places points or blocks along entities.

Dome draws domes (top half-sphere) from polygon meshes.

appendix A  Command Summary    471

Donut draws circular polylines with width.

Drag moves faces.

DragMode controls the appearance of objects while being dragged.

DrawOrder changes the display order of overlapping entities.

DrawOrderByLayer controls the draw order of overlapping objects through layer names.

DSettings displays the Settings dialog box for drafting settings (short for “drafting settings”).

DstConvert converts sheetset DST files to XML format.

DView changes the 3D viewpoint interactively, and turns on perspective mode (short for “dynamic view”).

DwgCodePage changes the code page for text in drawings.

DwgCompare compares differences between two drawings, and visually merges drawings.

DwgProps opens the Drawing Properties dialog box, showing the general information and user defined properties stored with
a drawing.

DxfIn and DxfOut imports DXF files (short for “drawing exchange format”) and exports drawings in ASCII or binary DXF format.

Dimensioning Commands
(Dim = dimension)

Ai_Dim_TextAbove moves text above the dimension line.

Ai_Dim_TextCenter centers text on the dimension line.

Ai_Dim_TextHome moves text to its home position, as defined by the dimension style.

AiDimFlipArrow mirrors arrowheads on dimension lines.

AiDimPrec changes the precision of dimension text.

AiDimStyle creates dimension styles from a selected dimension.

Dim places and edits dimensions at the ‘Dimensioning command:’ prompt.

Dim1 executes a single dimension command at the ‘Dimensioning command:’ prompt.

DimAligned draws dimensions parallel to (aligned with) selected entities; works with lines, polylines, arcs, and circles.

DimAngular dimensions angles.

DimArc places arc length dimensions.

DimBaseline places multiple linear or angular dimensions starting at the same base point; command can only be used when at
least one other dimension is already in the drawing.

DimCenter places center marks at the center points of circles and arcs.

DimContinue continues linear and angular dimensions from the endpoint of the previous dimension.

DimDiameter dimensions the diameter of circles and arcs, and places a center mark.

DimDisassociate removes associativity from selected dimension entities.

DimEdit changes wording and angle of dimension text; changes the angle of extension lines.

DimLeader draws leaders.

DimLinear places linear dimensions horizontally, vertically, or rotated.

DimOrdinate measures x and y ordinate distances from a common origin, specified by the current UCS origin.

DimOverride overrides the values of the current dimension style.

DimRadius dimensions the radii of arcs and circles.

472    Customizing BricsCAD V19

DimReassociate reassociates or associates dimensions to entities or points on entities.

DimRegen updates associative dimensions (short for “dimension regeneration”).

DimStyle and -DimStyle creates and modifies dimension styles through the Drawing Explorer.

DimStyleSet reports the current dimension style in the command bar.

DimTEdit changes the position of dimension text.

Dimensional Constraint Commands
(dc = dimensional constraint)

CleanUnusedVariables purges variables not used by constraint expressions and not linked to dimensions.

dcAligned constrains the distance between two defining points on entities.

dcAngular constrains the angle between three constraint points on entities; or between two lines; or between two polyline seg-
ments; or constrains the angles of arcs or polyline arcs.

dcConvert converts an associative dimension to a dimensional constraint.

dcDiameter constrains the diameters of circles, arc, or polyline arcs.

dcDisplay shows and hides dimensional constraints.

dcHorizontal constrains the horizontal distance between two defining points on entities.

dcLinear constrains horizontal or vertical distance between two defining points on entities.

dcRadial constrains the radius of circles, arcs, or polyline arcs.

dcVertical constrains the vertical distance between two defining points on entities.

DelConstraint removes all dimensional (and geometrical) constraints from an entity.

DimConstraint applies a dimensional constraint to an entity or between constraint points on entities; converts associative
dimensions to dynamic dimensions.

Direct Modeling Commands
(Available for Pro or Platinum editions only; dm = direct modeling)

dmAngle3D applies angle constraints between the faces of a solid or of different solids.

dmAudit checks and fixes 3D models.

dmAuditAll also checks and fixes 3D ACIS models in externally-referenced drawings

dmChamfer creates an equal distance chamfer between adjacent faces.

dmCoincident3D applies coincident constraints between two edges, two faces, or an edge and a face of two different solids.

dmConcentric3D applies concentric constraints between two cylindrical, spherical, or conical surfaces.

dmConstraint3D applies geometric relationships and dimensional constraints between sub-entities (such as faces, surfaces, and
edges) of 3D entities.

dmCopyFaces copies features like holes and ribs to the same or other 3D solids

dmDeformCurve deforms one or more connected faces of a 3D solid/surface by replacing their edges with given curves.

dmDeformMove deforms one or more connected faces of a 3D solid/surface by moving and rotating their edges.

dmDeformPoint deforms as smoothly as possible (using G1 or G2 continuity) a region, one or more connected faces of a 3D
solid or a surface by moving a point lying on one of them in arbitrary 3D direction.

dmDelete deletes faces and solids.

dmDistance3D applies a distance constraint between two sub-entities of a solid or of different solids.

appendix A  Command Summary    473

dmExtrude creates 3D solids by extruding closed 2D entities, regions or closed boundaries.

dmFillet creates a smooth fillet between adjacent faces sharing a sharp edge.

dmFix3D applies a fixed constraint to a solid or to an edge or a face of a solid.

dmGroup creates new groups, edits them, and dissolves groups.

dmMove moves the selected solids, or faces or edges of a solid using a vector.

dmParallel3D applies a parallel constraint between two faces of a solid or of different solids.

dmPerpendicular3D applies a perpendicular constraint between two faces of a solid or of different solids.

dmPushPull adds or removes volume from a solid by moving a face.

dmRadius3D applies a radius constraint to cylindrical surfaces or circular edges.

dmRepair fixes inconsistencies in 3D geometry supported by ACIS kernel (3D solids, surfaces).

dmRevolve creates 3D solids by revolution of closed 2D entities or regions about an axis.

dmRigidSet3D defines a set of entities or sub-entities as a rigid body.

dmRotate rotates faces of a solid around an axis.

dmSelect selects edges and faces of 3D solids or surfaces based on their geometric properties.

dmSelectEdges selects faces and edges of 3D solids.

dmSimplify simplifies the geometry and topology of 3D solid entities by removing unnecessary edges and vertices, merges seam
edges, and replaces the geometry of faces and edges by analytic surfaces and curves, if possible within the user-specified tolerance.
Run this command on imported 3D solid geometry.

dmSimplifyAll also unnecessary elements in externally referenced drawings

dmStitch converts a set of region and surface entities that bound a watertight area to a 3D solid.

dmTangent3D applies a tangent constraint between a face and a curved surface of different solids.

dmThicken creates 3D solids by thickening (i.e. adding thickness to) surfaces, their faces, and faces of 3D solids.

dmTwist twists 3D solids, surfaces, and regions by an angle.

dmUpdate forces 3D constraints to update.

E Commands
EAttEdit edits the value and most properties of attributes (short for “enhanced attribute editor”).

EdgeSurf creates a 3D Coons mesh surface patch between four lines, forming a closed shape (short for “edge surface”).

EditEData creates and edits extended entity data (short for “edit entity data”).

Elev changes the default elevation and thickness.

Ellipse draws ellipses and elliptical arcs.

EndCompare ends the drawing compare session

Endpoint toggles endpoint entity snap; snaps to the ends of open entities, such as line, arcs, and open polylines.

Erase erases selected entities from drawings; alternatively, press the Del key.

eTransmit creates a package of a drawing file and all its dependencies, such as external references, images, font files, plot configu-
ration files, plot style tables and font map files.

ExpBlocks opens the Blocks section of the Drawing Explorer dialog box (short for “explorer blocks”).

ExpFolders opens the Drawing Explorer on the Folders tab.

ExpImages opens the Drawing Explorer at the Images section.

474    Customizing BricsCAD V19

ExpLayers opens the Drawing Explorer at the Layers section.

Explode breaks complex objects into their component entities.

Explorer opens the Drawing Explorer dialog box, which controls Layers, Layer States, Linetypes, Multiline Styles, Multileader
Styles, Text Styles, Dimension Styles, Table Styles, Coordinate Systems, Views, Visual Styles, Lights, Materials, Render Presets, Blocks,
External References, Images, PDF Underlays, Dependencies, Page Setups, and Section Planes.

Export saves entities in other file formats.

ExportLayout exports visible objects from the current layout to model space of new drawings.

ExportPDF exports the current layout to a PDF file.

ExpPdfs opens the Drawing Explorer at the PDF section.

ExpUcs creates, modifies, deletes named UCSes through the Drawing Explorer (short for “explore user-defined coordinate systems”).

ExpXrefs opens the Drawing Explorer at the XRefs section.

Extend extends entities to bounding edges defined by other entities.

Extension toggles extension entity snap, which snaps to the point where a line extended would intersect another entity.

Extrude extrudes closed entities as 3D solids and open ones as 3D surfaces.

F Commands
FbxExport and -FbxExport export 3D models in FBX format for rendering programs

Field inserts text that is updated automatically when system variables change.

FileOpen opens drawing (DWG), template (DWT), and interchange (DXF) files from the command line.

Files opens the operating system’s file manager, such as Windows Explorer or Finder.

Fill fills areas with a solid color or color gradient

Fillet rounds entities.

Find finds and replaces text in notes, annotations, and dimension text.

Flatshot creates a hidden line representation of all 3D solids in model space as a block or a new drawing.

Flatten flattens 2D objects with thickness and allows to convert splines to polylines.

G Commands
GCE snaps the the geometric center of entities.

GenerateBoundary creates closed polylines from faces of 3D solids, as well as from boundaries detected when the Enable
Boundary Detection of SelectionModes is activated.

GeographicLocation sets the geographic location of the drawing.

GoToStart displays the Start tab.

Gradient and -Gradient fill closed areas with gradient fills of one or two colors.

GradientBkgOff and GradientBkgOn turn off and on the gradient displayed in the working area.

GraphScr switches from the text windows to the graphics windows (short for “graphics screen”).

Grid turns the grid display on or off and sets other grid options.

Group and -Group creates and modifies named groups of entities.

appendix A  Command Summary    475

Geometric Constraint Commands
(For 3D constraints, see Direct Modeling Commands section; gc = geometric constraints)

ConstraintBar shows, hides, and resets the display of geometric constraint icons.

DelConstraint removes all geometrical (and dimensional) constraints from an entity.

gcCenter snaps to the centroid of closed entities.

gcCoincident constrains points on entities coincidently; or constrains a point on an entity to another entity.

gcCollinear constrains lines collinearly.

gcConcentric constrains the center points of arcs, circles, ellipses, and/or elliptical arcs to be coincident.

gcEqual constrains lines to have the same length, or arcs and circles to have the same radius.

gcFix constrains points on entities to fixed positions.

gcHorizontal constrains lines or linear polyline segments, or pairs of points on entities to be parallel to the x axis in the current
coordinate system.

gcParallel constrains two lines or linear polyLine segments to be parallel to each other.

gcPerpendicular constrains two lines or linear polyline segments to be perpendicular to each other.

gcSmooth constrains a spline to be fluidly continuous to another spline, or arc, or line, or polyline.

gcSymmetric constrains two entities, or two points on entities, to be symmetric about a line of symmetry.

gcTangent constrains one entity tangent to another.

gcVertical constrains lines or linear polyline segments, or pairs of points on entities to be parallel to the y axis in the current
coordinate system.

GeomConstraint acts as a universal command that applies all available geometric constraint points.

H Commands
Hatch and -Hatch fills a selected boundary with a pattern.

HatchEdit and -HatchEdit edits hatch patterns and gradient fills.

HatchGenerateBoundary generates a boundary around a hatch or gradient fill.

HatchGripEdit adds and removes grips from hatches and gradients.

HatchToBack sets the draw order of all hatch entities in the drawing to display behind all other entities.

Helix draws 2D spirals or 3D helixes.

Help displays online help.

HelpSearch prompts for searching through the help files at the command prompt.

Hide removes hidden lines from 3D entities until the UnisolateObjects command is used.

HideObjects temporarily hides selected entities.

Hyperlink and -Hyperlink adds hyperlinks to entities or modifies existing hyperlinks.

HyperlinkOptions controls the display of the hyperlink cursor, shortcut menu, and tooltips.

I Commands
Id reports the x,y,z coordinates of a picked point.

Image inserts raster images in drawings through the Drawing Explorer.

ImageAdjust adjusts the properties of images through the Properties palette.

476    Customizing BricsCAD V19

ImageAttach and -ImageAttach attache raster images to the drawing like xrefs.

ImageClip clips images.

ImageFrame toggles the frame around images.

ImageQuality determines the display quality of images attached to the drawing.

Import displays a dialog box for importing files into the drawing: DWG, DXF, DWT, and DAE (Collada) files. Platinum edition also
imports IFC and SKP (SketchUp) files. Additional formats are imported with the optional Communicator module.

Imprint imprints 2D entities onto planar faces of 3D solids and surfaces; allows to create additional edges on planar faces.

Insert and -Insert inserts blocks or another drawing into the current drawing.

InsertAligned inserts blocks repeatedly, and inserts mirrored blocks.

InsertGuided and -InsertGuided inserts blocks along guide curves.

Insertion toggles Insertion entity snap; snaps to the insertion point of text and blocks.

InsertObj displays data from other programs in drawings, such as text documents, spreadsheets, and images.

Interfere checks interferences between solid models.

Intersect creates regions or 3D solids from the intersection of regions or 3D solids.

Intersection toggles Intersection entity snap; snaps to the intersections of entities.

IsolateObjects hides all other entities from view.

Isoplane controls the isometric plane (left, right, or top) when isometric snap is used.

J Command
Join joins lines, lwpolylines, 2D polylines, 3D polylines, circular arcs, elliptical arcs, splines and helixes at common endpoints.

K Command
KeepMe visually merges drawings during the DrawingCompare command

L Commands
Layer: see Layer Commands below.

Layout creates, copies, renames, and deletes layouts.

LayoutManager displays the Layout Manager dialog box for creating, naming, and reordering sets of layouts

LConnect creates connections between faces of two solids

Leader draws leader lines that connect annotations to drawing entities.

Lengthen changes the length of open objects, such as lines and arcs.

LicenseManager provides access to all Bricsys software licenses, as shown below.

LicEnterKey enters the license key number (short for “licence enter key”).

LicProperties reports the BricsCAD license information; modifies and deactivates single user and volume license keys.

LicPropertiesCommunicator reports license information for the optional extra-cost Communicator add-on.

Light places lights in drawings.

LightList displays the lighting palette.

Limits sets the extents of the drawing and the grid.

Line draws straight line segments.

appendix A  Command Summary    477

LineType and -LineType creates, loads, and sets linestyles.

List lists the properties of selected entities at the command line.

LiveSection toggles the Live Section property of a section plane.

Load loads compiled SHX shape files into the drawing.

Loft creates 3D solids passing through two or more cross sections.

LogFileOff and LogFileOn turn off and on log file recording.

LWeight sets lineweight options.

Layer Commands
LayCur moves the selected entities to the current layer.

Layer and -Layer controls layers and layer properties.

LayerP undoes previously applied changes to layer settings when LayerPMode is on (short for “layer previous”).

LayerPMode controls the tracking of changes made to layer settings.

LayersPanelClose and LayersPanelOpen closes and open the Layers panel.

LayerState saves and restores the properties of layers.

LayFrz and LayThw freeze and thaw the layers associated with entities selected in the drawing.

LayIso and LayUnIso isolate and restore layers associated with entities selected in the drawing; locks or turns off all other layers
(short for “layer isolate”).

LayLck and LayUlk lock and unlock the layers of selected entities.

LayMCur changes the working layer to that of a selected entity (short for “layer make current”).

LayOff and LayOn turn off and on layers associated with entities selected in the drawing; off layers cannot be seen.

M Commands
Mail attaches the current drawing to a new message with your computer’s default email client.

Manipulate launches the widget for rotating, copying, moving, mirroring, and scaling entities.

MapConnect sets up a connection with a Web Map Service, after the GeographicLocation command defines the geographic
location in the drawing.

MassProp reports the area, perimeter, and other mathematical properties of 3D solids and 2D regions (short for “mass properties”).

MatBrowserClose and MatBrowserOpen close and open the materials browser.

MatchPerspective changes the viewpoint in perspective mode to match a background image.

MatchProp assigns the properties of one entity to one or more other entities (short for “match properties”).

MaterialAssign assigns materials from the Material Browser onto 3D objects

MaterialMap maps material definitions onto the surfaces of objects, with presets for boxes, planes, spheres, and cylinders.

Materials creates materials and edits their properties through the Drawing Explorer.

MatLib displays the Rendering Materials panel.

Measure places points or blocks along entities.

MechanicalBrowserClose closes the Mechanical Browser panel.

MechanicalBrowserOpen displays the Mechanical Browser panel.

Menu loads menu files to modify the user interface.

478    Customizing BricsCAD V19

MenuLoad and MenuUnload load and unload CUIX and CUI (user interface customization), MNU (menu), MNS (LISP code),
and ICM (IntelliCAD menu) files.

Midpoint toggles Midpoint entity snap; snaps to the middle of lines, arcs, and other open entities.

MInsert inserts a block as a rectangular array; combines the -Insert and Array commands (short for “multiple insertion”).

Mirror draws mirror image copies of entities.

Mirror3D draws mirror images of entities about a plane in 3D space.

MLeader creates multileader entities using the current multileader style.

MLeaderAlign aligns multiple leaders

MLeaderCollect collects multiple leader blocks

MLeaderEdit adds leader lines to and removes leader lines from a multileader entity.

MLeaderEditExt adds and removes leader lines, adds and removes vertices from a multileader entity.

MLeaderStyle creates and manages multileader styles through the Drawing Explorer.

MLine draws multilines.

MLStyle creates and edits multiline styles.

ModelerProperties and -ModelerProperties controls the various settings of the ACIS modeler through the Settings dialog box.

Move displaces entities a specified distance in a specified direction.

MoveEData moves extended entity data from one entity to another.

MSlide makes SLD (slide) files from the current view.

MSpace switches to model space inside a viewport of layout tab.

MText and -MText opens the multi-line text editor interface for placing paragraph text.

Multiple command prefix forces commands to repeat themselves automatically.

MView creates viewports in layout tab.

MvSetup prepares sets of paper space viewports; superseded by the ViewBase command.

MTP snaps to the midpoint between two points.

N Commands
Navigate walks and flys through 3D models.

Nearest toggles Nearest entity snap mode; snaps to the nearest geometry on entities.

NetLoad loads .NET applications.

New starts new drawing files.

NewSheetSet creates a new sheet set.

NewWiz starts new drawings with the New Drawing Wizard.

Node toggles Node entity snap mode; snaps to point entities.

None turns off all entity snap modes.

Number adds incremented number tags for BIM entities

O Commands
ObjectScale and -ObjectScale adds or removes supported scales for annotative entities.

Offset offsets linear entities in parallel orientation.

appendix A  Command Summary    479

OleLinks adjusts links of OLE entities embedded in or linked to drawings (short for “object linking and embedding”).

OleOpen opens OLE objects for modification.

OnWeb opens the Bricsys home page in your computer’s default Web browser.

Oops un-erases the last erased entity, including those erased by the Block command.

Open opens an existing drawing file.

OpenSheetSet and -OpenSheetSet open an existing sheet set.

Options configures program operating parameters.

Orthogonal constrains the pointer so it moves parallel to the axes of the current coordinate system.

OSnap and -OSnap sets entity snaps through the Settings dialog box or the command line (short for “object snap”).

Overkill and -Overkill deletes duplicate entities and overlapping lines, arcs or polylines and unifies partly overlapping or contigu-
ous ones.

P Commands
PageSetup creates and edits page setups for plotting drawings in the Drawing Explorer.

Pan and -Pan moves the drawing display in the active view tile.

Panelize command draws freeform surfaces as subdivision meshes, optionally planarizing the panels.

Parallel turns on parallel entity snap.

-Parameters create and edit constraint expressions and values.

ParametersPanelOpen opens the Parameters panel.

ParametersPanelClose closes the Parameters panel.

Parameterize adds constraints and parameters to models automatically.

ParametricBlock creates a parametric block from entities in the drawing; useful for BEdit.

PasteBlock inserts data from the Clipboard as block.

PasteClip inserts data from the Clipboard.

PasteOrig pastes entities from the clipboard at the coordinates from the source drawing.

PasteSpec pastes entities from the clipboard, after the user specifies the format.

PdfAdjust adjust the fade, contrast and monochrome settings of PDF underlays.

Pdfattach and -PdfAttach attaches PDF files as underlays into the drawing.

PdfClip clips PDF underlays.

PdfImport And -PdfImport imports PDF files and converts them to drawing entities.

PdfLayers controls the display of layers in PDF underlays.

PdfOptions controls the exporting of drawings in PDF format through the Settings dialog box.

PEdit edits polylines, 3D polylines, and 3D meshes (short for “polyline edit”).

PEditExt edits vertices and segments of a polyline.

Perpendicular toggles perpendicular entity snap mode.

PFace draws 3D multi-sided meshes; meant for use by programs (short for “polyface mesh”).

Plan sets plan view to construction plane.

PLine draws polyline lines, arcs, and splines with optional width (short for “polyline”).

Plot and -Plot both execute the plot command at the command line.

480    Customizing BricsCAD V19

PlotStamp specifies a header and footer for plotted output.

PlotStyle sets the current plot style; works only when plot styles are enabled in drawings.

PlotterManager creates customized parameter PC3 files for printers and other output devices; executes the PlotConfig.exe
utility program.

Point draws point entities.

PointCloud displays the Point Cloud section of the Drawing Explorer

PointCloudAttach and -PointCloudAttach attach Bricsys-format point cloud files to the current drawing

PointCloudColorMap changes the colors of point based on their elevation.

PointCloudCrop and PointCloudUncrop crop the extents of the current point cloud, and undo the cropping.

PointCloudPointSize specifies the size of points in a point cloud.

PointCloudPointSize_Minus decreases the size of points in a point cloud.

PointCloudPointSize_Plus increases the size of points in a point cloud.

PointCloudPreprocess and -PointCloudPreprocess convert ASCII PTS, PTX, LAS, and other cloud files into the compressed
binary Bricsys file format.

PointLight places point lights in drawings.

Polygon draws equi-sided polygons from polylines of 3 to 1,024 sides.

PolySolid creates 3D wall-like solids.

Preview shows a preview before printing the drawing.

Print plots the drawing to a plotter, printer, or file.

ProfileManager sets current, create, copy, delete, import and export user profiles.

ProjectGeometry projects geometry like curves, and edges onto regions, surfaces, and 3D solids.

Properties displays the Properties palette to change drawing entity properties.

PropertiesClose closes the Properties palette.

PSetupIn and -PSetupIn imports page setup definitions from another drawing.

PSpace switches from model to paper space (short for “paper space”).

Publish and -Publish prints sheet lists of model space or paper space layouts; saves a sheet list to a file.

Purge and -Purge remove unused named entities from drawings, such as unused layers and linetypes.

Pyramid draws three-dimensional solid pyramids.

Q Commands
QLeader draws leaders; specifies properties through a dialog box.

QNew opens new drawings in BricsCAD (short for “quick new”).

QPrint prints the drawing with the default plot configuration, without displaying the Print dialog box (short for “quick print”).

QSave saves the drawing without displaying the Save dialog box (short for “quick save”).

QSelect composes a selection set using filters.

QText toggles the display of text as rectangles (short for “quick text”).

Quadrant toggles snaps to quadrant points of circles, arcs, and polyarcs.

Quick toggles snaps to the first entity geometry found; used together with at least one other entity snap mode.

Quit ends BricsCAD; optionally saves unsaved drawings.

appendix A  Command Summary    481

R Commands
Ray draws semi-infinite construction lines

ReAssocApp associates extended entity data with applications (short for “reassociate application”).

Recover repairs damaged drawings.

RecScript records keystrokes to an SCR file for playback with the Script command (short for “record script”).

Rectang draws a rectangular polyline.

Redefine restores built-in commands that have been undefined using the Undefine command.

Redo reverses the effects of a previous U command.

Redraw refreshes the display of the active view tile.

RedrawAll refreshes the display of all currently-open view tiles.

RedSdkInfo reports on rendering related hardware and driver specifications (short for “Red software development kit information”).

RefClose closes the in-situ block and xref editor.

RefEdit and -RefEdit edits blocks and externally-referenced drawings (short for “reference editor”).

RefSet adds and removes entities from the block or external reference being edited.

Regen regenerates the current viewport.

RegenAll regenerates all viewports.

RegenAuto determines when BricsCAD regenerates the drawing automatically.

Region converts an entity enclosing an area into a region.

ReInit reloads the PGP alias file (short for “re-initialize”).

Rename and -Rename changes the names of objects.

Render and -Render generates photorealistic renderings od 3D models using materials and lights.

RenderPresets creates and edits rendering presets, and to set the current render preset.

ReportPanelClose and ReportPanelOpen close and open the Report panel.

ResetAssocViews removes associative data from blocks

ResetBlock resets dynamic blocks to their default values.

Resume resumes an interrupted script.

RevCloud draws revision clouds commonly used for red-lining drawings.

Revolve draws 3D solids or surfaces by revolving 2D objects about an axis.

RevSurf creates 3D mesh surfaces by revolving open entities around a axis (usually a line).

Ribbon displays the ribbon user interface.

RibbonClose closes the ribbon.

Rotate rotates entities about a base point.

Rotate3D moves entities about a 3D axis.

RScript reruns the currently loaded SCR script file (short for “repeat script”).

RtLook moves the viewpoint through a 3D scene (short for “real time looking”).

RtPan pans the view in real time.

RtRot, RtRotCtr, or RtRotF rotate the viewpoint in real time.

RtRotX, RtRotY, or RtRotZ rotates the 3D viewpoint about the x, y, or z axis in real time.

482    Customizing BricsCAD V19

RtUpDown tilts the viewpoint up, down, left, or right in real time.

RtWalk walk lefts, right, forward or backward through 3D scenes in real time.

RtZoom zooms into the drawing in real time.

RuleSurf draws ruled surfaces between two curves.

S Commands
Save saves the drawing under the current file name or a specified name.

SaveAll saves all open drawings.

SaveAs saves an unnamed drawing with a file name or renames the current drawing.

SaveAsR12 saves drawings in DWG R12 format.

SaveFileFolder opens the File Explorer to the folder in which the current drawing is saved.

Scale enlarges or reduces specified entities equally in the X, Y, and Z directions.

ScaleListEdit and -ScaleListEdit edits the list of scale factors used by annotative scaling, sheet scales, and plot scales.

Script loads and runs SCR script files.

Scrollbar toggles the display of the horizontal and vertical scroll bars.

Section creates a cross section based on the intersection of a plane and 3D solids.

SectionPlane creates a section entity that creates sections of 3D solids.

SectionPlaneSettings defines the properties of section plane entities in the Drawing Explorer.

SectionPlaneToBlock saves the selected section plane as a 2D cross section / elevation block or a 3D cutaway section block.

Security determines whether VBA macros can run automatically; not available in the 64-bit version.

SecurityOptions sets a password to protect the drawing.

Select places selected entities in the ‘Previous’ selection set.

SelectAlignedFaces selects all faces in a model which are coplanar with a selected face.

SelectAlignedSolids selects all solids in a model of which a face is coplanar with a selected face.

SelectConnectedFaces selects all faces in a model which are connected to a selected face.

SelectConnectedSolids selects all solids in a model which are connected to a selected face.

SelectSimilar selects entities of the same type and properties.

SelGrips prompts to selects entities and then displays grips.

Settings displays the Settings dialog box for changing the values of variables.

SettingsSearch opens the Settings dialog box at the specified category, variable name, or user preference.

SetUCS sets the UCS to a viewpoint specified through a dialog box.

SetVar displays and changes the values of system variables (short for “set variables”).

Sh and Shell open the Windows command prompt window; runs other applications (short for “shell”).

Shade shades the drawing mode.

ShadeMode sets the current visual style at the command line, such as Realistic, Conceptual, Edges, and X-ray.

-ShadeMode sets the old type of shade modes: 2D, 3D, Hidden, Flat, Flat with Edges, Gouraud, and Gouraud with edges.

Shape places shapes from SHX files in drawings.

SheetSet and SheetsetHide manage sheet sets, and closes the Sheet Set pane.

appendix A  Command Summary    483

Singleton toggles whether multiple copies of BricsCAD can run at the same time.

Site imports terrain models from points and Civil 3D surfaces, or creates them from entities.

SiteEdit edits terrain sites.

Sketch draws freehand lines.

Slice slices 3D solids with a plane or surface.

Snap restricts pointer movements and pointing in the drawing to specified intervals.

Solid draws solid-filled 2D faces.

SolidEdit edits 3D solids and 2D regions.

SolProf creates hidden line representations of 3D solids in a layout viewport.

Spell checks the spelling of text in the drawing.

Sphere draws three-dimensional solid spheres.

Spline draws quadratic or cubic non-uniform rational Bezier spline (NURBS) curves.

SpotLight inserts spot lights into drawings.

Screenshot takes a screen grab of the current space, excluding all UI elements.

Start runs operating system applications.

StatBar toggles the display of the status bar.

Status reports status of the drawing’s settings in the Text window.

StlOut export 3D models in STL format for 3D printing (short for “stereolithography”).

StopScript stops recording of scripts begun with the RunScript command.

Stretch moves or stretches entities.

StandardPartsPanelClose and StandardPartsPanelOpen close and open the Standard Parts panel.

StructurePanel and StructurePanelClose open and close the Structure panel displaying tree structure of the drawing content.

+StructurePanel opens a CST structure tree configuration file.

Style and -Style creates and edits text styles through the Drawing Explorer.

StylesManager creates and attaches plot style files.

Subtract creates a composite region or a 3D solid by subtraction.

SunProperties edits sun properties through the Drawing Explorer.

SupportFolder opens the C:\Users\<login>\AppData\Roaming\Bricsys\BricsCAD\V20x64\en_US\Support folder.

SvgOptions controls the output as SVG files.

Sweep creates solid primitives or surfaces by sweeping two dimensional entities along a path.

SysWindows arranges windows.

Sheet Metal Commands
(Available for Mechanical edition; requires an additional license; sm = sheet metal)

LicPropertiesSheetmetal reports the license state of the sheet metal module.

smAssemblyExport converts 3D solid sheet metal parts to DXF files with unfolding information.

smBendCreate converts hard edges (sharp edges between flange faces) into bends.

smBendSwitch converts bends to lofted bends.

484    Customizing BricsCAD V19

smConvert automatically recognizes flanges and bends in a 3D solid.

smDelete removes a bend or a junction by restoring the hard edge between two flanges; removes a flange with all the bends
adjacent to it.

smDissolve removes sheet metal data from the selected features.

smExport2D exports unfolded representations of sheet metal bodies as 2D profiles in DXF or DWG files.

smExportOSM exports sheet metal solids to OSM files (short for “Open Sheet Metal”) used by CADMAN-B CAM systems.

smExtrude extrudes polylines to sheet metal parts.

smFlangeBase creates base (initial) flanges of sheet metal parts from closed 2D entities.

smFlangeBend bends existing flanges along a line, taking into account the k-factor.

smFlangeConnect closes gaps between two arbitrarily oriented flanges.

smFlangeContour creates flange from a closed contour.

smFlangeEdge creates one or more flanges to a sheet metal part by pulling one or more edges of an existing flange.

smFlangeRotate rotates a selected flange of a sheet metal part with automatic selection of the rotation axis depending on the
design intent.

smFlip switches flange sides to reverse reference faces.

smForm adds forms to sheet metal.

smHemCreate creates a variety of hems on sheet metal models.

smImprint uses imprinted edges to split thickness faces of sheet metal parts.

smJunctionCreate converts hard edges (sharp edges between flange faces) and bends into junctions.

smJunctionSwitch changes symmetrical junction features to overlapping faces.

smLispGet returns values related to sheet metal variables.

smLispSet changes values related to sheet metal variables.

smLoft creates sheet metal part with lofted bends and flanges from two non-coplanar curves.

smParametrize generates consistent sets of 3D constraints for sheet metal parts

smReliefCreate creates proper corner (three or more adjacent flanges) and bend reliefs (at the start and end of a flange edge).

smRepair restores the 3D solid model of a sheet metal part by thickening one of its sides: all thickness faces become perpen-
dicular to flange faces.

smReplace replacing form features with ones from libraries.

smRibCreate adds associative rib (form) features on sheet metal parts based on 2D profiles.

smSelect selects hard edges and form features of sheet metal parts.

smSplit splits flanges and lofted bend; replaces the old smFlangeSplit command.

smTabCreate creates a tab between two flanges.

smUnfold generates unfolded 2D or 3D representations of sheet metal parts.

T Commands
Table and -Table draws tables in drawings.

Tabledit edits text in table cells.

TableExport exports the contents of a table entity to CSV (command separated values) files.

TableMod modifies the properties of table cells.

appendix A  Command Summary    485

TableStyle creates and manages table styles through the Drawing Explorer.

Tablet configures and calibrates tablets, and toggles tablet mode (windows mode).

TabSurf draws tabulated surfaces from a path curve and a direction vector.

Tangent toggles tangent entity snap; snaps to the tangency of circles, arcs, ellipses and elliptical arcs.

TConnect connects solids by their faces

TemplateFolder opens the C:\Users\<login>\AppData\Local\Bricsys\BricsCAD\V20x64\en_US\Templates folder.

Text and -Text places lines of text in the drawing.

TextScr displays the text window showing command history (short for “text screen”).

TextToFront sets the draw order of all texts and dimensions in the drawing to display in front of all other entities.

TfLoad and TfSave open and save handle, xsd, and strip data from DWT template files.

Time reports on the time spent in the drawing.

TInsert inserts blocks in the cells of tables.

Tolerance draws tolerances (datum indicators and basic dimension notation).

Toolbar and -Toolbar displays and hides toolbars.

ToolPalettes opens the Tool Palettes bar.

ToolPalettesClose closes the Tool Palettes bar.

-ToolPanel opens tool panels by name at the command bar.

Torus draws three-dimensional torrid solids.

TpNavigate opens tool palettes or group at the command bar.

Trace draws traces.

Transparency toggles the transparency of monotone images; has nothing do with the transparency property.

Trim trims entities at a cutting edge defined by other entities.

TxtExp explodes text into polyline segments.

U Commands
U reverses the most recent command.

Ucs creates and displays named UCSes through the command bar (short for “user-defined coordinate system”).

UcsIcon toggles the display of the UCS icon.

Undefine disables built-in commands.

Undo restores deleted entities.

UndoEnt undoes property changes to selected entities.

Union creates composite regions or solids by addition.

UnisolateObjects makes entities visible again following the IsolateObjects and HideObjects commands.

Units and -Units sets coordinate and angle display formats and precision.

UpdateField forces the values of field text to update.

Url opens the default Web browser (short for “uniform resource locator”).

486    Customizing BricsCAD V19

V Commands
View and -View saves, restores, and manages user-defined model and sheet views, and presets views.

ViewHorizontal rotates the viewpoint to make z=0 (horizontal)

ViewLabel adds labels to views; available through the Sheet Set manager only.

ViewRes sets the view resolution and toggles fast-zoom mode (short for “view resolution”).

VisualStyles and -VisualStyles creates and edits visual style definitions in the Drawing Explorer or at the command line.

VmlOut exports drawings in VML format embedded in Web pages (short for “vector markup language”).

VpClip clips viewports in layouts (short for “view port clipping”).

VpLayer changes the properties of layers in the current paper space viewport (short for “view port layer”).

VpMax and VpMin maximize and minimize the current viewport in paper space.

VPoint Changes the 3D viewpoint through a dialog box.

VPorts and -VPorts create one or more viewports in model space (short for “viewports”).

VSlide displays images saved as SLD or WMF files (short for “view slide”).

VBA Commands
(Available in Pro and Platinum editions only; vba = Visual Basic for Applications)

VbaIde opens the BLADE editing window; short for “integrated development environment”.

VbaLoad and -VbaLoad loads VBA projects.

VbaMan manages VBA projects; short for “manager”.

VbaRun and -VbaRun runs, creates, edits, and deletes VBA macros.

VbaSecurity sets the security level for running VBA macros.

VbaUnload unloads VBA projects.

ViewBase Commands
(Available in Pro and Platinum editions only)

ViewBase generates associative orthographic and standard isometric views of a 3D solid model in a paper space layout.

ViewDetail creates a detail view of a portion of a standard generated drawing at a larger scale.

ViewDetailStyle specifies the visual format of detail views and detail symbols.

ViewEdit changes the scale and hidden line visibility of drawing views; works in paper space only.

ViewExport exports the content of drawing views to Model space or to a new drawing; operates in paper space only.

ViewProj generates additional projected views from an existing drawing view.

ViewSection creates cross section views based on standard drawing views generated by the ViewBase command in paper space
layouts.

ViewSectionStyle specifies the visual format of section views and section lines.

ViewUpdate updates drawing views.

appendix A  Command Summary    487

W Commands
WBlock and -WBLock export blocks, selected entities, or the entire drawing as a DWG file.

WCascade, WClose, WCloseAll, WNext, and WPrev cascade the windows, close the current window, close all windows,
and switch to the next or previous windows.

Weblight places Web lights.

Wedge draws three-dimensional solids with a sloped face tapering along the X axis.

WhoHas reports the ownership of a drawing file.

WhTile, WiArrange, and WvTile tiles windows horizontally, in an overlapping manner, or vertically.

WipeOut creates blank areas in drawings.

WmfOut exports the drawing in WMF (WIndows meta file), EMF (enhanced meta file), or SLD (slide) format.

WorkSets creates and loads named sets of drawing files.

Workspace sets the current workspace; creates, modifies, and saves workspaces.

WsSaveAs saves the current user interface by name.

WsSettings opens the Customize dialog box at the Workspace tab.

X Commands
XAttach attaches externally-referenced drawings.

XClip clips externally-referenced drawings.

XEdges extracts edges from 3D solids as lines.

XLine draws infinitely long lines.

XmlSave prompts for handles to save in an XML file.

XOpen opens externally-referenced drawings in a new window.

Xplode explodes entities, and provides control over the resulting entities.

XRef and -XRef attaches DWG files to the current drawing through the Drawing Explorer or the command line.

Z Commands
Zcenter toggles the 3D center entity snap; snaps to the center of planar or curved 3D faces.

Zknot toggles the 3D knot entity snap; snaps to a knot on a spline.

Zmidpoint toggles the 3D midpoint snap; snaps to the midpoint of a face edge.

Znearest toggles the 3D nearest entity snap; snaps to a point on the face of a 3D entity that is nearest to the cursor.

Znone disables all 3D snap modes.

Zoom increases or decreases the visible part of the drawing.

Zperpendicular toggles the 3D perpendicular entity snap; snaps to a point perpendicular to a face.

Zvertex toggles the 3D vertex entity snap; snaps to the closest vertex of a 3D entity.

488    Customizing BricsCAD V19

Commands
? displays the Help window.

2dIntersection toggles apparent intersection entity snap; snaps to the intersections of entities, even when they only appear to
intersect in 3D space.

3D draws 3D polygon mesh objects: boxes, cones, cylinders, dishes, domes, pyramids, spheres, tori, wedges, or meshes.

3DArray constructs 3D rectangular arrays and rotated polar arrays.

3DCompare compares the 3D content of two drawing files.

3DConvert converts 3D solids to polyface meshes.

3DFace draws 3D 4-edged faces with optional invisible edges.

3DIntersection toggles Intersection entity snap; snaps to the intersections of entities.

3DMesh draws 3D surface meshes.

3DOsnap and -3DOsnap sets the entity snap modes for 3D entities through the Settings dialog box.

3DPoly draws 3D polylines.

APPENDIX B

Summary of
Variables & Settings

BRICSCAD USES VARIABLES TO STORE AND REPORT SETTINGS AFFECTING THE PROGRAM
and drawings. There are two types of variables: system variables that mimic the names and values
from AutoCAD, and preference variables unique to BricsCAD. You access and change variables
through a dialog box (Settings command) or directly on the command line (SetVar command).

This appendix lists over 1,000 variable names in alphabetical order.

	 UPPERCASE text indicates the name is also found in AutoCAD as a system variable

	 MixedCase text means the variable is a preference, and so is unique to BricsCAD

	 Blue text indicates that the variable is new in V20

	 ikeThrough text indicates the variable was removed from BricsCAD

	 userid or login refers to your computer login name

When you see Read-only (r/o), it means that you cannot change the variable’s value; the value has
been set by BricsCAD or by the operating system.

490    Inside BricsCAD V20

System Variable Name		 Read-Only	 Default Value		

A Variables
ACADLSPASDOC			 0
ACADPREFIX		 r/o	 “ C : \ U s e r s \ u s e r i d \ A p p D a t a \ Ro a m i n g \ B r i c s y s \ B r i c s C A D \ V 2 0 x 6 4 \ e n _ U S \ S u p p o r t \ ;
			 C:\Program Files (x86)\Bricsys\BricsCAD V20x64\Support\,;
			 C:\Program Files (x86)\Bricsys\BricsCAD V20x64\Fonts\;
			 C:\Program Files (x86)\Bricsys\BricsCAD V20x64\Help\en_US\”
ACADVER		 r/o	 “20.0 BricsCAD”
AcisHlrResolution			 -1	
ACISOUTVER			 70	
AcisSaveAsMode			 0	
AdaptiveGridStepSize 			 4.0000	
AFLAGS			 0	
ALLOWBREAKLINECROSSINGS 			 “1”	
ALLOWEDBENDANGLES 			 “1”	
AllowTabExternalMove			 1	
AllowTabMove			 1	
AllowTabSplit			 1	
ANGBASE			 0	
ANGDIR			 0	
Anglesamplinginterval 			 “5”	
ANNOALLVISIBLE			 1	
ANNOAUTOSCALE 			 -4	
AnnoSelected		 r/o	 0	
ANNOTATIVEDWG			 0	
AntiAliasRender			 2	
AntiAliasScreen	 		 1	
APBOX			 0	
ArcTessellation			 “0.01”
APERTURE			 10	
AREA		 r/o	 0	
AREAPREC 			 -1	
AREAUNITS 			 “in ft mi µm mm cm m km”
ARRAYASSOCIATIVITY 			 1	
ARRAYEDITSTATE 		 r/o	 0	
ARRAYTYPE 			 0	
Associativity 			 “3”	
ATTDIA			 0	
ATTMODE			 1	
AttractionDistance			 3	
ATTREQ			 1	
AUDITCTL			 0	
AuditErrorCount		 r/o	 0	
AUNITS			 0	
AUPREC			 0	
AutoAdoptSizes			 “1”
AUTOCOMPLETEDELAY			 0.3	
AUTOCOMPLETEMODE			 47	
AutoFlipQuarterTurn			 “1”
AutomaticConnection 			 “1”
AutomaticTees			 “0”
AUTOMENULOAD			 1	
AutoResetScales			 0	
AutosaveChecksOnlyFirstBitDBMOD		 1	
AUTOSNAP			 119	
AutoTrackingVecColor			 171	

appendix B  Summary of Variables & Settings    491

System Variable Name		 Ready-Only	 Default Value		

AutoUpdateRooms 			 “1”	
AutoVpFitting			 1	
AXISMODE			 0	
AXISUNIT			 X= 0 Y= 0 Z= 0	

B Variables
BACKGROUNDPLOT			 2	
BActionColor			 “7”
BACKZ		 r/o	 0	
BASEFILE			 “Default-mm.dwt”	
BDependencyHighlight			 1
bimConnectCutType 			 “0”
bimMatchProp			 “1”
BIMOSMODE			 0
BINDTYPE			 0
BKGCOLOR			 7
BKGCOLORPS			 7
BLIPMODE			 0
BLOCKEDITLOCK			 0
BLOCKEDITOR			 0
BlocksPath			 “C:\Users\userid\Documents\”
bmAutoUpdate			 1
bmForceUpdateMode			 0
bmFormTemplatePath			 “”
bmReportPanel 			 0
BMUPDATEMODE			 0		
BndLimit			 1000
BoundaryColor 			 95
BParameterSize			 12
BpTextHorizontal			 1
BSysLibCopyOverwrite			 0
BtMarkDisplay			 1
BVMODE			 0

C Variables
CACHELAYOUT			 1
CAMERADISPLAY			 0
CAMERAHEIGHT			 0
CANNOSCALE			 “1:1”
CANNOSCALEVALUE		 r/o	 1
CDATE		 r/o	 20160211.15522
CECOLOR			 “ByLayer”
CELTSCALE			 1
CELTYPE			 “ByLayer”
CELWEIGHT			 -1
CenterCrossGap 			 “0.05x”
CenterCrossSize 			 “0.1x”
CenterExe 			 0.1200
CenterLayer 			 “.”
CenterLtscale 			 1.0000
CenterLtype 			 “Center2”
CENTERLTYPEFILE 			 “Default.Lin”
CenterMarkExe 			 1
CETRANSPARECNY			 “ByLayer”
CGEOCS 		 r/o	 “”

492    Inside BricsCAD V20

System Variable Name		 Read-Only	 Default Value		

CHAMFERA			 0
CHAMFERB			 0
CHAMFERC			 0
CHAMFERD			 0
CHAMMODE			 0
ChapooLog
ChapooLogVerbose
ChapooOnModified
ChapooServer
ChapooTempFolder
ChapooUploadDependencies
ChapooWebsite
CheckDwlPresence			 0
CIRCLERAD			 0
CLAYER			 “0”
CLEANSCREENOPTIONS			 15
CLEANSCREENSTATE		 r/o	 0
ClipBoardFormat			 1
CLIPBOARDFORMATS			 127
CliPromptLines 			 4
CLISTATE		 r/o	 1
CloseChecksOnlyFirstBitDBMOD			 0
CloudDownloadPath			 “c:\users\userid\documents\bricsys247\”
CloudLog 			 0
CloudLogVerbose 			 0
CloudOnModified 			 1
CloudServer 			 “https://my.bricsys247.com/”
CloudSessionPath			 “c:\users\userid\appdata\local\bricsys\bricscad\”
CloudTempFolder 			 “C:\Users\userid\AppData\Local\Temp\Bricsys_24_7\”
CloudUploadDependencies 			 1
CMATERIAL			 “ByLayer”
CMDACTIVE		 r/o	 1
CMDDIA			 1
CMDECHO			 1
CmdLineEditBgColor			 “#fefefe”
CmdLineEditFgColor			 “#202020”
CmdLineFontName			 “Consolas”
CmdLineFontSize			 10
CmdLineListBgColor			 “#ecf1ff”
CmdLineListFgColor			 “#000000”
CMDLNTEXT			 “:”
CMDNAMES		 r/o	 “SETTINGS”
CMLEADERSTYLE			 “Standard”
CMLJUST			 0
CMLSCALE			 1
CMLSTYLE			 “Standard”
CMPCLRMISS			 1	
CMPCLRMOD1			 253	
CMPCLRMOD2			 2	
CMPCLRNEW			 3	
CMPDIFFLIMIT			 1000	
CmpFadeCtl			 80
CmpLog			 0
ColorTheme			 0
COLORX			 11
COLORY			 112

appendix B  Summary of Variables & Settings    493

System Variable Name		 Ready-Only	 Default Value		

COLORZ			 150
COMAcadCompatibility			 0
COMPASS			 0
Componentspath 			 “C:\Users\userid\AppData\Roaming\Bricsys\BricsCAD\V20x64\en_US\Support\Bim\Components\”
CONSTRAINTBARDISPLAY 			 3			
ContinuousMotion			 0
ConvertToArrays			 1
COORDS			 1
COPYMODE			 0
CPLOTSTYLE			 “ByColor”
CPROFILE		 r/o	 “Default”
CreateThumbnailOnTheFly			 1
CREATEVIEWPORTS			 1
CrosshairDrawMode			 2
CROSSINGAREACOLOR			 91
CTAB			 “Model”
CTABLESTYLE			 “Standard”
Ctrl3DMouse			 1
CtrlMButton			 1
CTRLMOUSE			 1
CURSORSIZE			 3
CVPORT			 2

D Variables
DataLinkNotify			 2
DATE		 r/o	 2456335.6613464
DBCSTATE		 r/o	 0
DBLCLKEDIT			 1
DBMOD		 r/o	 0
DCTCUST			 “”
DCTMAIN			 “en_US.dic”
ddBetweenKnots			 2
ddFastMode			 0
ddGridAspectRatio			 0
ddMaxFacetEdgeLength			 0
ddMaxNumGridLines			 10000
ddNormalTol			 15
ddPointsPerEdge			 0
ddSurfaceTol			 0
ddUseFacetRES			 1
DefaultBlockName			 0
DefaultInsPoint			 0
DEFAULTLIGHTING 			 0
DefaultLightShadowBlur			 8
DefaultNewSheetTemplate			 “”
DefaultRoomHeight replaced by RoomHeight
DEFLPLSTYLE			 “Normal”
DEFPLSTYLE			 “ByColor”
DeleteInterference			 1
DeleteTool			 1
DELOBJ			 1
DEMANDLOAD			 3
DGNFRAME			 2
dgnImp2dClosedBSplineCurveImportMode 		 0
dgnImp2dEllipseImportMode 			 0

494    Inside BricsCAD V20

System Variable Name		 Read-Only	 Default Value		

dgnImp2dShapeImportMode 			 0
dgnImp3dClosedBSplineCurveImportMode 		 1
dgnImp3dEllipseImportMode 			 0
dgnImp3dObjectImportMode 			 0
dgnImp3dShapeImportMode 			 1
dgnImpBreakDimensionAssociation 			 0
dgnImpConvertDgnColorIndicesToTrueColors 		 0
dgnImpConvertEmptyDataFieldsToSpaces 	1
dgnImpEraseUnusedResources 			 0
dgnImpExplodeTextNodes 			 0
dgnImpImportActiveModelToModelSpace 		 1
dgnImpImportInvisibleElements 			 1
dgnImpImportPaperSpaceModels 			 1
dgnImpImportViewIndex 			 -1
dgnImpRecomputeDimensionsAfterImport 		 0
dgnImpSymbolResourceFiles 			 “”
dgnImpXRefImportMode 			 2
DGNOSNAP			 1
DIASTAT		 r/o	 0
DisplayAxes 			 “0”
DisplayAxesForMep 			 “0”
DisplayScaling		 r/o	 125
DisplaySidesAndEnds 			 “1”
DisplaySnapMarkerInAllViews			 0
DisplayTooltips			 1
DISPPAPERBKG			 1
DISPPAPERMARGINS			 1
DISPSILH			 0
DISTANCE		 r/o	 0
dmAuditLevel			 1
DMAUTOUPDATE			 1
dmConnectionCutType		 	 0
dmExtrudeMode			 0
dmPushPullSubtract 			 1
DMRECOGNIZE			 0
DockPriority			 1
DocTabPosition			 0
DONUTID			 0.5
DONUTOD			 1
DRAGMODE			 2
DragModeHide			 0
DRAGMODEINTERRUPT 			 1
DRAGOPEN			 1
DRAGP1			 10
DRAGP2			 25
DRAGSNAP			 0
DrawingPath			 “C:\Users\userid\Documents\”
DrawingViewPreset			 “none”
DrawingViewPresetHidden 			 0
DrawingViewPresetScale			 “”
DrawingViewpPesetTangent 			 0
DrawingViewPresetScale			 “”
DrawingViewPresetTangent		 	 0
DRAWORDERCTL			 3
DxfTextAdjustAlignment			 0

appendix B  Summary of Variables & Settings    495

System Variable Name		 Ready-Only	 Default Value		

DWFFRAME			 2
DWFOSNAP			 1
DwfVersion			 2
DWGCHECK			 0
DWGCODEPAGE		 r/o	 “ANSI_1252”
DWGNAME		 r/o	 “Drawing1.dwg”
DWGPREFIX		 r/o	 “C:\Program Files (x86)\Bricsys\BricsCAD V20x64\”
DWGTITLED		 r/o	 0
DXEVAL			 12
DxfTextAdjustAlignment			 0
DYNCONSTRAINTMODE 			 1
DYNDIGRIP			 31
DynDimAperture			 20
DynDimColorHot			 142
DynDimColorHover			 142
DynDimDistance			 1
DynDimLineType			 1
DYNDIVIS			 1
DynInputTransparency			 65
DYNMODE			 3
DynPiCoords			 0

Dimensions Variables
DIMADEC			 0
DIMALT			 0
DIMALTD			 2
DIMALTF			 25.4
DIMALTRND			 0
DIMALTTD			 2
DIMALTTZ			 0
DIMALTU			 2
DIMALTZ			 0
DIMANNO 		 r/o	 0
DIMAPOST			 “”
DIMARCSYM			 0
DIMASO			 1
DIMASSOC			 2
DIMASZ			 0.18
DIMATFIT			 3
DIMAUNIT			 0
DIMAZIN			 0
DIMBLK			 “”
DIMBLK1			 “”
DIMBLK2			 “”
DIMCEN			 0.09
DIMCLRD			 0
DIMCLRE			 0
DIMCLRT			 0
DIMDEC			 4
DIMDLE			 0
DIMDLI			 0.38
DIMDSEP			 “0”
DIMEXE			 0.18
DIMEXO			 0.0625
DIMFIT			 3

496    Inside BricsCAD V20

System Variable Name		 Read-Only	 Default Value		

DIMFRAC			 0
DIMFXL			 1
DIMFXLON			 0
DIMGAP			 0.09
DIMJOGANG			 0.7853981634
DIMJUST			 0
Dimlayer 			 “.”
DIMLDRBLK			 “”
DIMLFAC			 1
DIMLIM			 0
DIMLTEX1			 “”
DIMLTEX2			 “”
DIMLTYPE			 “”
DIMLUNIT			 2
DIMLWD			 -2
DIMLWE			 -2
DIMPOST			 “”
DIMRND			 0
DIMSAH			 0
DIMSCALE			 1
DIMSD1			 0
DIMSD2			 0
DIMSE1			 0
DIMSE2			 0
DIMSHO			 1
DIMSOXD			 0
DIMSTYLE		 r/o	 “Standard”
DIMTAD			 0
DIMTDEC			 4
DIMTFAC			 1
DIMTFILL			 0
DIMTFILLCLR			 “BYBLOCK”
DIMTIH			 1
DIMTIX			 0
DIMTM			 0
DIMTMOVE			 0
DIMTOFL			 0
DIMTOH			 1
DIMTOL			 0
DIMTOLJ			 1
DIMTP			 0
DIMTSZ			 0
DIMTVP			 0
DIMTXSTY			 “Standard”
DIMTXT			 0.18
DIMTXTDIRECTION			 0
DIMTZIN			 0
DIMUNIT			 2
DIMUPT			 0
DIMZIN			 0

E Variables
EDGEMODE			 0
ELEVATION			 0

appendix B  Summary of Variables & Settings    497

System Variable Name		 Ready-Only	 Default Value		

ElevationAtBreaklineCrossings 			 “0”
EnableAttraction			 1
EnableBimBkUpdate			 “0”
EnableHyperlinkMenu			 1
EnableHyperlinkTooltip			 0
ERRNO			 0
EXPERT			 0
ExpInsAlign			 0
ExpInsAngle			 0
ExpInsFixAngle			 1
ExpInsFixScale			 1
ExpInsScale			 1
EXPLMODE			 1
ExportAcisFormatVersion			 “0”
ExportCatiav4FormatVersion			 “0”
ExportCatiav5FormatVersion			 “0”
ExportHiddenParts 			 “0”
EXPORTMODELSPACE			 0
EXPORTPAGESETUP			 0
EXPORTPAPERSPACE			 0
ExportParasolidFormatVersion			 “0”
ExportProductStructure 			 “1”
ExportStepFormatVersion 			 “1”
EXTMAX		 r/o	 -1.0000E+20,-1.0000E+20,-1.0000E+20
EXTMIN		 r/o	 1.0000E+20,1.0000E+20,1.0000E+20
EXTNAMES			 1

F Variables
FACETRATIO			 0
FACETRES			 0.5
fbxExportCameras			 1
fbxExportEntities			 1
fbxExportEntitiesSelType		 	 0
fbxExportLights			 1
fbxExportMaterials			 1
fbxExportTextures			 0
fbxExportTexturesPath			 “c:\program files\bricsys\bricscad v20 en_us\”
FEATURECOLORS 			 1
FIELDDISPLAY			 1
FIELDEVAL			 31
FILEDIA			 1
FILLETRAD			 0.5
FILLMODE			 1
FittingRadiusType 			 “0”
FittingRadiusValue 			 “1.5”
FLATLAND			 Off
FONTALT			 “simplex.shx”
FONTMAP			 “default.fmp”
FRAME			 3
FRAMESELECTION			 0		
FRONTZ		 r/o	 0
FULLOPEN		 r/o	 1

498    Inside BricsCAD V20

System Variable Name		 Read-Only	 Default Value		

G Variables
GDIOBJECTS		 r/o	 3768
GearteethNumber 			 “1”
GENERATEASSOCVIEWS			 0
GEOLATLONGFORMAT			 1
GEOMARKERVISIBILITY			 1
GeomRelations			 0
GetStarted			 1
GfAng 			 0.0000
GfClr1 			 “5”
GfClr2 			 “7”
GfClrLum 			 1.0000
GfClrState 			 0
GfName 			 1
GfShift 			 0
GLSWAPMODE			 2
GradientColorBottom			 “#d2d2d2”
GradientColorMiddle			 “#fafafa”
GradientColorTop			 “#ffffff”
GradientMode			 “0”
GRIDAXISCOLOR			 252
GRIDDISPLAY			 3
GRIDMAJOR			 5
GRIDMAJORCOLOR			 253
GRIDMINORCOLOR			 254
GRIDMODE			 0
GRIDSTYLE			 0
GRIDUNIT			 1/2”,1/2”
GRIDXYZT			 1
GRIPBLOCK			 0
GRIPCOLOR			 72
GRIPDYNCOLOR			 140
GRIPHOT			 240
GRIPHOVER			 150
GRIPOBJLIMIT			 100
GRIPS			 1
GRIPSIZE			 4
GRIPTIPS			 1
GsDeviceType
GsDeviceType2D 			 0
GsDeviceType3D 			 1

H Variables
HALOGAP			 0
HANDLES		 r/o	 1
HANDSEED			 “64”
Headroom			 “2000”
HIDEPRECISION			 0
HideSystemPrinters			 0
HIDETEXT			 1
HIDEXREFSCALES			 1
HIGHLIGHT			 1
HIGHLIGHTCOLOR			 142
HIGHLIGHTEFFECT			 0

appendix B  Summary of Variables & Settings    499

System Variable Name		 Ready-Only	 Default Value		

HomeGradientColorBottom replaced by HorizonBkg_SkyLow
HomeGradientColorMiddle replaced by HorizonBkg_SkyHorizon
HomeGradientColorTop replaced by HorizonBkg_SkyHigh
HomeGradientMode replaced by HorizonBkg_Enable
HorizonBkg_Enable			 1
HorizonBkg_GroundHorizon			 “#878787”
HorizonBkg_GroundOrigin			 “#5F5F5F”
HorizonBkg_SkyHigh			 “#239BFF”
HorizonBkg_SkyHorizon			 “#FFFFFF”
HorizonBkg_SkyLow			 “#FAFAFF”
HotkeyAssistant 			 1
HPANG			 0
HPANNOTATIVE			 0
HPASSOC			 1
HpBackgroundColor			 “.”
HpColor			 “.”
HPBOUND			 1
HPBOUNDRETAIN 			 0
HPDOUBLE			 0
HPDRAWORDER			 3
HPGAPTOL			 0
HPLAYER 			 “.”
HPLINETYPE 			 0
HpIslandDetection			 0
HPMAXAREAS			 0
HPNAME			 “”
HPOBJWARNING			 10000
HPORIGIN			 0”,0”
HPSCALE			 1
HPSEPARATE			 0
HPSPACE			 1
HPSTYLE replaced by HpIslandDetection
HPTRANSPARENCY 			 “.”
HYPERLINKBASE			 “”

I Variables
IfcExplodeExternalReferences 			 “0”
IfcExportBaseQuantities 			 “0”
IfcExportElementsOnOffAndFrozenLayer 			 “1”
IfcExportMultiplyElementsAsAggregated 			 “0”
IfcExportTesselation			 “0”
IfcImportBimData 			 “1”
IfcImportBrepGeometryAsMeshes			 “0”
IfcImportModelOrigin		 	 “0”
IfcImportParametricComponents 			 “0”
ImportIfcProjectStructurAsXrefs 			 “0”
IfcImportSpaces 			 “0”
ImageCacheFolder			 “C:\Users\userid\AppData\Local\Temp\ImageCache\”
ImageCacheMaxMemory			 160
ImageDiskCache 			 1
IMAGEFRAME			 1
IMAGEHLT			 0
ImageNotify			 0
ImportColors 			 “1”
ImportCreoAlternateSearchPaths 			 “”

500    Inside BricsCAD V20

System Variable Name		 Read-Only	 Default Value		

ImportCuiFileExists			 0
ImportHiddenparts 			 “0”
ImportIfcProjectStructureAsXrefs 			 “0”
ImportIgesSimplify 			 “1”
ImportIgesStitch 			 “1”
ImportInventorAlternateSearchPaths 			 “”
ImportNxAlternateSearchPaths			 “”
ImportPmi 			 “1”
ImportProductStructure 			 “2”
ImportRepair 			 “0”
ImportSimplify 			 “0”
ImportSolidedgeAlternateSearchPaths 			 “”
ImportSolidworksAlternateSearchPaths 			 “”
ImportSolidworksRotateYz 			 “1”
ImportStepRotateYz 			 “0”
ImportStitch 			 “0”
IncludePlotStamp			 1
INDEXCTL			 0
INETLOCATION			 “http://www.bricsys.com”
INSBASE			 0”,0”,0”
INSNAME			 “”
INSUNITS			 1
INSUNITSDEFSOURCE			 0
INSUNITSDEFTARGET			 0
InsUnitsScaling 			 1
INTERFERECOLOR			 “BYLAYER”
InterfereLayer	 		 “Interference”
INTERFEREOBJVS			 “”
INTERFEREVPVS			 “”
InteriorElevationMinLength 			 “20”
InteriorElevationOffset 			 “2”
INTERSECTIONCOLOR			 257
INTERSECTIONDISPLAY			 0
ISAVEBAK			 1
ISAVEPERCENT			 50
ISOLINES			 4

L Variables
LASTANGLE			 0
LASTPO			 0”,0”,0”
LASTPROMPT		 r/o	 “: SETTINGS”
LATITUDE			 37.795
LayerFilterExcess			 250		
LAYERPMODE			 1
LAYLOCKFADECTL			 50
LAYOUTREGENCTL			 2
LayoutTab			 1
LegacyCodeSearch		 r/o	 0
LengthSamplingInterval 			 “40”
LENGTHUNITS 			 “”
LENSLENGTH			 50
LevelOfDetail			 “0”
LicExpDays			 31
LICFLAGS			 7
LICKEY 		 r/o	 “7897-9999-0000-99999-0000”

appendix B  Summary of Variables & Settings    501

System Variable Name		 Ready-Only	 Default Value		

LightGlyphColor			 30
LIGHTGLYPHDISPLAY			 1
LIGHTINGUNITS			 0
LightWebGlyphColor			 1
LIMCHECK			 0
LIMMAX			 1’,9”
LIMMIN			 0”,0”
LINEARBRIGHTNESS 			 0
LINEARCONTRAST 			 0
LISPINIT			 1
LoadMechanical2d			 0
LOCALE			 “en_US”
LocalRootFolder 			 “C:\Users\userid\AppData\Local\Bricsys\BricsCAD\V20x64\en_US\”
LOCALROOTPREFIX		 r/o	 “C:\Users\userid\AppData\Local\Bricsys\BricsCAD\V20x64\en_US\”
LOCKUI			 0
LOFTANG1			 1.5707963268
LOFTANG2			 1.5707963268
LOFTMAG1			 0
LOFTMAG2			 0
LOFTNORMALS			 1
LOFTPARAM			 7
LOGFILEMODE			 0
LOGFILENAME		 r/o	 “”
LOGFILEPATH		 r/o	 “C:\Users\userid\AppData\Local\Bricsys\BricsCAD\V20x64\en_US\”
LOGINNAME		 r/o	 “userid”
LONGITUDE			 -122.394
LookFromDirectionMode			 1
LookFromFeedback			 1
LookFromZoomExtents			 1
LTSCALE			 1
LUNITS			 4
LUPREC			 4
LWDEFAULT			 25
LWDISPLAY			 0
LWDISPSCALE			 0.55
LWUNITS			 1

M Variables
M_axisDiameter			 6
M_totalAaxisLength			 130
MACROREC			 0
MACROTRACE 			 0
MANIPULATOR			 0
ManipulatorColorTheme			 0
MANIPULATORDURATION			 250
ManipulatorSize			 1
MassPrec			 -1
MassPropAccuracy			 0.01
MASSUNITS			 “oz lbs stone mg g kg tonne”
MaterialsPath			 “”
MAXACTVP			 64
MAXHATCH			 100000
MAXSORT			 200
MAXTHREADS			 0
MBSTATE 		 r/o	 0

502    Inside BricsCAD V20

System Variable Name		 Read-Only	 Default Value		

MBUTTONPAN			 1
MEASUREINIT			 0
MEASUREMENT			 0
Mech2dSaveFormat			 2013
MENUBAR 			 1
MENUCTL			 1
MENUECHO			 0
MENUNAME		 r/o	 “C:\Users\userid\AppData\Roaming\Bricsys\Bricscad\V20x64\en_US\Support\default.cui”
MESHTYPE			 1
MiddleClickClose			 1
MILLISECS		 r/o 	 436750804
MIRRTEXT			 1
MLEADERSCALE 			 1
MODEMACRO			 “”
MSLTSCALE			 1
MSOLESCALE			 1
MTEXTCOLUMN 			 0
MTEXTDETECTSPACE			 1		
MTEXTED			 “”
MTEXTFIXED			 2
MTFLAGS			 0
MultiSelectAngularTolerance 			 “3”
MyDocumentsFolder 			 “C:\Users\userid\Documents\”
MYDOCUMENTSPREFIX 		 r/o	 “C:\Users\userid\Documents\”

N Variables
NEARESTDISTANCE			 1
NAVVCUBEDISPLAY			 3
NAVVCUBELOCATION	 	 	 0
NAVVCUBEOPACITY	 	 	 50
NAVVCUBEORIENT	 	 	 1
NavVCubeSize			 4
NFILELIST			 10
NOMUTT			 0
NORTHDIRECTION			 0

O Variables
OBJECTISOLATIONMODE			 0
OBSCUREDCOLOR			 257
OBSCUREDLTYPE			 0
OFFSETDIST			 -1
OFFSETERASE			 0
OFFSETGAPTYPE			 0
OLEFRAME			 2
OLEHIDE			 0
OLEQUALITY			 0
OLESTARTUP			 0
OPMSTATE		 r/o	 1
OrbitAutoTarget 			 1
ORTHOMODE			 0
OSMODE			 4133
OSNAPCOORD			 2
OSNAPZ			 0
OSOPTIONS			 1

appendix B  Summary of Variables & Settings    503

System Variable Name		 Ready-Only	 Default Value		

P Variables
PanBuffer			 1
PanelButtonSize 		 r/o	 1
PAPERUPDATE			 0
PARAMETERCOPYMODE			 1
PdfCache 			 2
PdfEmbeddedTtf			 1
PdfExportSolidHatchType			 2
PDFFRAME			 1
PdfHatchToBmpDpi			 300
PdfImageAntiAlias 			 1
PdfImageCompression 			 1
PdfImageDPI			 300
PdfImportApplyLineweight 			 1
PdfImportAsBlock 			 0
PdfImportConvertSolidsToHatches 			 0
PdfImportImagePath			 “pdf images”
PdfImportJoinLineAndArcSegments 			 1
PdfImportLayersUseType 			 0
PdfImportRasterImages 			 0
PdfImportSolidFills 			 1
PdfImportTrueTypeText 			 1
PdfImportTrueTypeTextAsGeometry 			 0
PdfImportUseGeometryOptimization			 1
PdfImportVectorGeometry 			 1
PdfLayersSetting			 1
PdfLayoutsToExport			 0
PdfMergeControl			 0
PdfNotify			 0
PDFOSNAP			 1
PdfPaperHeight			 297
PdfPaperSizeOverride			 0
PdfPaperWidth			 210
PdfPRCCompression
PdfPRCExport
PdfPRCSingleViewMode
PdfRenderDPI			 300
PdfShxTextAsGeometry			 0
PdfSimpleGeomOptimization			 1
PdfTextIsSearchable
PdfTtfTextAsGeometry			 0
PdfUsePlotStyles			 1
PdfVectorResolutionDpi			 2400
PdfZoomToExtentsMode			 1
PDMODE			 0
PDSIZE			 0
PEDITACCEPT			 0
PELLIPSE			 0
PERIMETER			 0
PERSPECTIVE			 0
PFACEVMAX			 4
PICKADD			 1
PICKAUTO			 3
PICKBOX			 4
PICKDRAG			 0

504    Inside BricsCAD V20

System Variable Name		 Read-Only	 Default Value		

PICKFIRST			 1
PICKSTYLE			 1
PictureExportScale			 1
_PKSER 		 r/o	 “”
PlacesBarFolder1			 0
PlacesBarFolder2			 1
PlacesBarFolder3			 3
PlacesBarFolder4			 5
PLATFORM		 r/o	 “Microsoft Windows NT Version 6.2”
PLINECACHE			 0
PLINECONVERTMODE			 0
PLINEGEN			 0
PLINETYPE			 2
PLINEWID			 0
PlotCfgPath			 “C:\Users\userid\AppData\Roaming\Bricsys\BricsCAD\V20x64\en_US\PlotConfig\”
PLOTID			 “”
PlotOutputPath			 “”
PLOTROTMODE 			 2
PlotStylePath			 “C:\Users\userid\AppData\Roaming\Bricsys\BricsCAD\V20x64\en_US\PlotStyles\”
PLOTTER			 0
PLOTTRANSPARENCYOVERRIDE 			 1
PLQUIET			 0
Pointcloud2dVsDisplay			 1
PointcloudBoundary			 1
PointcloudCacheFolder			 “c:\users\userid\appdata\local\temp\pointcloudcache\”
PointcloudPointMax			 4000000
PointcloudPointSize			 2
POLARADDANG			 “”
POLARANG			 90
POLARDIST			 0
POLARMODE			 0
POLYSIDES			 4
POPUPS		 r/o	 1
PpState		 r/o	 0
PreviewDelay			 30
PREVIEWEFFECT			 2
PREVIEWFILTER			 5
PreviewTopdown
PREVIEWTYPE			 0
PreviewWndInOpenDlg			 1
PrintFile			 “.”
PrintPdfPreview			 1
PRODUCT		 r/o	 “Bricscad”
PROGBAR			 1
PROGRAM		 r/o	 “BRICSCAD”
PROJECTIONTYPE 			 0
PROJECTNAME			 “”
ProjectSearchPaths			 “”
PROJMODE			 1
PROMPTMENU			 3
PromptMenuFlags			 1
PromptOptionFormat 			 2
PromptOptionTranslateKeywords			 1
PropertyPreview 			 1
PropertyPreviewDelay 			 500
PropertyPreviewObjLimit 			 500

appendix B  Summary of Variables & Settings    505

System Variable Name		 Ready-Only	 Default Value		

PropPrevTimeout 			 1
PROPUNITS 			 103
PropUnitsVersion 			 1
PROXYGRAPHICS			 1
PROXYNOTICE			 1
PROXYSHOW			 1
PROXYWEBSEARCH			 1
PSLTSCALE			 1
PSOLHEIGHT			 4
PSOLWIDTH			 0.25
PSTYLEMODE		 r/o	 1
PSTYLEPOLICY			 1
PSVPSCALE			 0
PUBLISHALLSHEETS			 1
PUCSBASE			 “”

Q Variables
QAFLAGS			 0
QTEXTMODE			 0
QuadAperture
QuadCommandLaunch			 1
QuadCommandSort
QuadDisplay			 0
QuadExpandDelay			 110
QuadExpandGroup
QuadExpandTabDelay			 50
QuadGoTransparent			 0
QuadHideDelay			 1000
QuadHideMargin			 40
QuadIconSize			 32
QuadIconSpace			 1
QuadMostRecentItems			 2
QuadPopupCorner			 1
QuadShowDelay			 150
_QuadTabFlags 			 12
QuadToolipDelay			 1200
QuadWarpPointer
QuadWidth			 5

R Variables
R12SaveAccuracy			 8
R12SaveDeviation			 0
RASTERPREVIEW			 1
RE_INIT		 r/o	 0
RealTimeSpeedUp			 5
REALWORLDSCALE			 1
RecentPath			 “C:\Users\userid\Documents\”
Redhilite_ducslocked_face_alpha			 25
Redhilite_ducslocked_face_color			 “#007aff”
RedHiliteFull_Edge_Alpha			 100
RedHiliteFull_Edge_Color			 “#007AFF”
RedHiliteFull_Edge_ShowHidden			 0
RedHiliteFull_Edge_Smoothing			 1

506    Inside BricsCAD V20

System Variable Name		 Read-Only	 Default Value		
RedHiliteFull_Edge_Thickness			 2
RedHiliteFull_Face_Alpha			 10
RedHiliteFull_Face_Color			 “#007AFF”
Redhilite_hiddenedge_smoothing			 1
Redhilite_hiddenedge_thickness			 1
RedHilitePartial_SelectedEdgeGlow_Alpha		 75
RedHilitePartial_SelectedEdgeGlow_Color			 “#FFFFFF”
RedHilitePartial_SelectedEdgeGlow_Smoothing		 1
RedHilitePartial_SelectedEdgeGlow_Thickness		 3
RedHilitePartial_SelectedEdge_Alpha			 100
RedHilitePartial_SelectedEdge_Color			 “#007AFF”
RedHilitePartial_SelectedEdge_ShowGlow			 1
RedHilitePartial_SelectedEdge_Smoothing		 1
RedHilitePartial_SelectedEdge_Thickness			 2
RedHilitePartial_SelectedFace_Alpha			 10
RedHilitePartial_SelectedFace_Color			 “#007AFF”
RedHilitePartial_UnselectedEdge_Alpha
RedHilitePartial_UnselectedEdge_Color
RedHilitePartial_UnselectedEdge_ShowHidden		 1
RedHilitePartial_UnselectedEdge_Smoothing
RedHilitePartial_UnselectedEdge_Thickness
RedHilite_HiddenEdge_Alpha			 50
RedHilite_HiddenEdge_Color			 “#FFFFFF”
RedHilite_HiddenEdge_Smoothing			 1
RedHilite_HiddenEdge_Thickness			 1
RedSdkLineSmoothing 			 0
ReduceLengthType 			 “0”
ReduceLengthValue 			 “0.5”
RefeditLockNotInWorkset			 0
REFEDITNAME		 r/o	 “”
REGENMODE			 1
RegExpand			 1
REMEMBERFOLDERS			 1
RenderMaterialDownload			 1
RenderMaterialPath			 “C:\ProgramData\...”
RenderMaterialStaticPath			 “C:\Program Files\...”
RenderUsingHardware			 1
ReportPanel 			 0
ReportPanelMode 			 0
RestoreConnections			 “1”
RevCloudArcStyle			 0
REVCLOUDCREATEMODE 			 1
REVCLOUDGRIPS 			 1
RevCloudMaxArcLength			 0.375
RevCloudMinArcLength			 0.375
RhinoVersion			 60
RIBBONDOCKEDHEIGHT			 120
RIBBONSTATE		 r/o	 0
Riserheight			 “170”
RoamableRootFolder	 	 r/o	 “c:\users...”
ROAMABLEROOTPREFIX		 r/o	 “C:\Users\userid\AppData\Roaming\Bricsys\BricsCAD\V20x64\en_US\”
ROLLOVEROPACITY 			 100
ROLLOVERTIPS 			 1
RolloverSelectionSet			 1		
Roomheight			 “3000”
RTDISPLAY			 1

appendix B  Summary of Variables & Settings    507

System Variable Name		 Ready-Only	 Default Value		

RTRotationSpeedFactor			 1
RTWalkSpeedFactor replaced by the StepSize variable		
RubberbandColor			 40
RubberbandStyle			 1
RunAsLevel 			 2

S Variables
Safemode		 r/o	 0
SaveChangeToLayout			 1
SAVEFIDELITY			 1
SAVEFILE		 r/o	 “”
SAVEFILEPATH			 “C:\Users\userid\AppData\Local\Temp\”
SaveFormat			 1
SaveLayerSnapshot			 1
SAVENAME		 r/o	 “”
SaveOnDocSwitch 			 0
SAVEROUNDTRIP			 1
SAVETIME			 60
SCREENBOXES		 r/o	 26
SCREENMODE		 r/o	 1
SCREENSIZE		 r/o	 145’-8”,73’-3”
SCRLHIST			 256
SDI			 0
SearchAll			 0
SectionScale 			 “0.02”
SectionSettingsSearchPath			 “”
SectionSheetsetTemplateImperial 			 “”
SectionSheetsetTemplateMetric 			 “”
SecureLoad		 r/o	 0
SELECTIONANNODISPLAY			 1
SELECTIONAREA			 1
SELECTIONAREAOPACITY			 25
SelectionModes			 0
SELECTIONPREVIEW			 3
SELECTSIMILARMODE			 130
SHADEDGE			 3
SHADEDIF			 70
SheetNumberLeadingZeroes			 1
SheetSetAutoBackup			 1
SheetSetTemplatePath			 “C:\Users\userid\AppData\Local\Bricsys\BricsCAD\V20x64\en_US\Templates\Sheet Sets\”
SHORTCUTMENU			 18
SHORTCUTMENUDURATION 			 250
ShowDocTabs			 1
ShowFullPathInTitle			 0
SHOWLAYERUSAGE			 0
ShowScrollButtons			 1
ShowTabCloseButton			 0
ShowTabCloseButtonActive			 0
ShowTabCloseButtonAll			 1
ShowTabControls			 1
ShowWindowListButton			 1
SHPNAME			 “”
SingletonMode			 0
SKETCHINC			 0.1
SKPOLY			 0

508    Inside BricsCAD V20

System Variable Name		 Read-Only	 Default Value		

SkpStitch			 1
SKYSTATUS			 0
SlabThickness			 “250”
smAssemblyExportReportPathType			 “0”
smAssemblyExportSolidTypesInReports			 “1”
smAttributesLayerColor 			 “7”
smAttributesLayertextheight 			 “0.01”
smAttributesLayerTextHeightType 			 “0”
smBendAnnotationsLayerColor			 “5”
smBendAnnotationsLayerTextHeight 			 “0.01”
smBendAnnotationsLayerTextHeightType 			 “0”
smBendlinesDownlayerColor 			 “1”
smBendlinesDownlayerLinetype 			 “Continuous”
smBendlinesDownlayerLineweight 			 “-3”
smBendlinesUplayerColor 			 “1”
smBendlinesUplayerLinetype 			 “Continuous”
smBendlinesUplayerLineweight			 “-3”
SMCOLORBEND 			 “#FFDC50”
SMCOLORBENDRELIEF 			 “#64D296”
SMCOLORCORNERRELIEF 			 “#64D296”
SMCOLORFLANGE 			 “#90A4AE”
smcolorflangereferenceside 			 “#68a4ae”
Smcolorform 			 “#8791e1”
SMCOLORJUNCTION 			 “#FF6E40”
SMCOLORLOFTEDBEND			 “#A0DCFA”
smColorMiter			 “#af46d8”
smColorTab			 “”
smColorWrongBend 			 “#ff3300”
smContoursLayerColor 			 “7”
smContoursLayerLinetype			 “continuous”
smContoursLayerLineweight			 “30”
smConvertPreferFormFeatures			 “0”
smConvertRecognizeHoles 			 “0”
smConvertRecognizeRibControlCurves			 “0”
smConvertWrongFeatureThicknessDeviationType		 “0”
smConvertWrongFeatureThicknessDeviationValue		 “0.2”
smdefaultbendlineextenttype 			 “0”
smdefaultbendlineextentvalue 			 “0.25”
smdefaultbendradiustype			 “2”
smdefaultbendradiusvalue			 “1”
smdefaultbendreliefwidthtype			 “0”
smdefaultbendreliefwidthvalue 			 “0.5”
smdefaultcornerreliefdiametervalue			 “-1”
smdefaultflangesplitextensiontype			 “0”
smdefaultflangesplitextensionvalue 			 “0.1”
smdefaultflangesplitgaptype 			 “0”
smdefaultflangesplitgapvalue 			 “0.1”
smdefaultformfeatureunfoldmode 			 “4”
smDefaultHemGapType		 	 “1”
smDefaultHemGapValue			 “0.005”
smdefaultjunctionalignmenttorelief 			 “0”
smdefaultjunctiongaptype 			 “0”
smdefaultjunctiongapvalue			 “0.001”
smdefaultkfactor 			 “0.27324”
smDefaultLoftedBendNumberSamples			 “10”
smdefaultreliefextensiontype			 “0”

appendix B  Summary of Variables & Settings    509

System Variable Name		 Ready-Only	 Default Value		

smdefaultreliefextensionvalue 			 “0.1”
smdefaultribfilletradiustype 			 “0”
smdefaultribfilletradiusvalue 			 “5”
smdefaultribprofileradiustype			 “0”
smdefaultribprofileradiusvalue 			 “2”
smdefaultribroundradiustype 			 “0”
smdefaultribroundradiusvalue 			 “1”
smdefaultsharpbendradiuslimitratio			 “5”
smDefaultTabChamferDistanceType	 		 “0”
smDefaultTabChamferDistanceValue			 “0.1”
smDefaultTabClearanceType			 “0”
smDefaultTabClearanceCalue			 “0.1”
smDefaultTabDistanceType			 “0”
smDefaultTabDistanceValue			 “20”
smDefaultTabEdgeType			 “0”
smDefaultTabFilletRadiusType			 “0”
smDefaultTabFilletRadiusValue			 “0.1”
smDefaultTabHeightType			 “0”
smDefaultTabHeightValue			 “1”
smDefaultTabLengthType			 “0”
smDefaultTabLengthValue			 “4”
smDefaultTabSlotNumber			 “3”
smdefaultthickness 			 “0.078740157480315”
smexportosmapproximationaccuracy 			 “0.000393701”
smexportosmminimaledgelength 			 “0.001968505”
smformfeaturesdowncolor 			 “6”
smformfeaturesdownlayerlinetype 			 “continuous”
smformfeaturesdownlayerlineweight 			 “-3”
smformfeaturesupcolor 			 “6”
smformfeaturesuplayerlinetype 			 “continuous”
smformfeaturesuplayerlineweight			 “-3”
smjunctioncreatehealcoincident 			 “0”
smoverallannotationslayercolor 			 “3”
smoverallannotationslayerlinetype 			 “continuous”
smoverallannotationslayerlineweight 			 “-3”
smparametrizeholesparametrization 			 “3”
smrepairloftedbendmerge 			 “0”
smsmartfeatures			 “3”
smSplitAmbiguousInput			 “0”
smsplitconvertbendtojunction			 “1”
smsplithealcoincident			 “0”
smsplitorthogonalbendsplit			 “0”
SMTARGETCAM 			 “”
SNAPANG			 0
SNAPBASE			 0”,0”
SNAPISOPAIR			 0
SnapMarkerColor			 20
SnapMarkerSize			 6
SnapMarkerThickness			 2
SNAPMODE			 0
SNAPSTYL			 0
SNAPTYPE			 0
SNAPUNIT			 1/2”,1/2”
SOLIDCHECK			 1
SORTENTS			 127

510    Inside BricsCAD V20

System Variable Name		 Read-Only	 Default Value		

spaAdjustMode			 0
spaCheckLevel	 		 10
spaGridAspectRatio			 0
spaGridMode			 1
spaMaxFacetEdgeLength			 0
spaMaxNumGridLines			 512
spaMinUGridLines			 0
spaMinVGridLines			 0
spaNormalTol			 15
spaSurfaceTol			 -1
spaTriangMode			 1
spaUseFacetRES			 1
SPLFRAME			 0
SPLINESEGS			 8
SPLINETYPE			 6
SRCHPATH			 “C:\Users\userid\AppData\Roaming\Bricsys\BricsCAD\V20x64\en_US\Support\;
			 C:\Program Files (x86)\Bricsys\BricsCAD V20x64\Support\;
			 C:\Program Files (x86)\Bricsys\BricsCAD V20x64\Fonts\;
			 C:\Program Files (x86)\Bricsys\BricsCAD V20x64\Help\en_US\”
SSFOUND			 “”
SSLOCATE			 1
SSMAUTOOPEN 			 1
SSMPOLLTIME 			 15
SSMSHEETSTATUS 			 2
SSMSTATE			 0
StackPanelType		 r/o	 0
Stairwidth			 “1000”
StampFontSize			 0.2
StampFontStyle			 “Arial”
StampFooter			 “”
StampFooterOffsetX			 0
StampFooterOffsetY			 0
StampHeader			 “”
StampHeaderOffsetX		 	 0
StampHeaderOffsetY			 0
StampUnits			 0
Statusbar			 1
STARTUP			 1
STEPSIZE			 6
StlPositiveQuadrant 			 1
STEPSPERSEC			 2
StructureTreeConfig			 “mechanical.cst”
SURFTAB1			 6
SURFTAB2			 6
SURFTYPE			 6
SURFU			 6
SURFV			 6
SvgBlendedGradients			 0
SvgDefaultImageExtension			 “.png”
SvgGenericFontFamily			 0
SvgHiddenLineRemoving
SvgImageBase			 “”
SvgImageUrl			 “”
SvgLineWeightScale			 1
SvgOutputHeight			 768
SvgOutputWidth			 1024

appendix B  Summary of Variables & Settings    511

System Variable Name		 Ready-Only	 Default Value		

SvgPrecision			 6
SvgScaleFactor			 0
SYSCODEPAGE		 r/o	 “ANSI_1252”

T Variables
TabControlHeight			 25
TABMODE			 0
TabsFixedWidth			 0
TangentLengthType 			 “0”
TangentLengthValue 			 “0”
TARGET			 0”,0”,0”
TDCREATE		 r/o	 2456335.5399919
TDINDWG		 r/o	 0.121354456
TDUCREATE		 r/o	 2456335.8733252
TDUPDATE		 r/o	 2456335.5399919
TDUSRTIMER		 r/o	 0.121354456
TDUUPDATE		 r/o	 2456335.8733252
TeeTangentLengthType		 	 “0”
TeeTangentLengthValue			 “0.5”
TemplatePath			 “C:\Users\userid\AppData\Local\Bricsys\BricsCAD\V20x64\en_US\Templates\”
TEMPPREFIX			 “”
TestFlags			 0
TestGsFlags			 0
TEXTANGLE			 0
TEXTED 			 2
TEXTEDITMODE			 0
TEXTEVAL			 0
TEXTFILL			 1
TEXTQLTY			 50
TEXTSIZE			 0.2
TEXTSTYLE			 “Standard”
TextureMapPath			 “C:\Program Files (x86)\Bricsys\BricsCAD V20x64\Textures\1\”
THICKNESS			 0
ThreadDisplay			 “0”
THUMBSIZE			 1
TILEMODE			 1
TILEMODELIGHTSYNCH			 1
TIMEZONE			 -8000
ToolbarMargin 		 r/o	 0
ToolbuttonSize 		 r/o	 0
TooliconPadding 		 r/o	 0
Tips			 1
ToolbarIconSize
TOOLPALETTEPATH			 “C:\Users\userid\AppData\Roaming\Bricsys\BricsCAD\V20x64\en_US\Support\ToolPalettes\”
TOOLTIPS 			 1
TPSTATE		 r/o	 0
TRACEWID			 0.05
TRACKPATH			 0
TRANSPARENCYDISPLAY 			 1
TrayIcons			 1
TrayNotify			 1
TrayTimeout			 0
TreadLength			 “290”
TREEDEPTH			 3020
TREEMAX			 10000000

512    Inside BricsCAD V20

System Variable Name		 Read-Only	 Default Value		

TRIMMODE			 1
TrustedPaths		 r/o	 “”
TSPACEFAC			 1
TSPACETYPE			 1
TSTACKALIGN			 1
TSTACKSIZE			 70
TTFASTEXT			 3

U Variables
UCSAXISANG			 90
UCSBASE			 “”
UCSDETECT			 0
UCSFOLLOW			 0
UCSICON			 3
UCSICONPOS			 0
UCSNAME		 r/o	 “”
UCSORG		 r/o	 0”,0”,0”
UCSORTHO			 1
UCSVIEW			 1
UCSVP			 1
UCSXDIR		 r/o	 1”,0”,0”
UCSYDIR		 r/o	 0”,1”,0”
UNDOCTL		 r/o	 5
UNDOMARKS		 r/o	 0
UNITMODE			 0
UseBIM
UseCommunicator 			 1
UseMechanical
USERI1 thru USERI5			 0
USERR1 thru USERR5			 0
USERS1 thru USERS5			 “”
UseSheetMetal
UseStandardOpenFileDialog			 0

V Variables
VbaMacros			 1
VENDORNAME		 r/o	 “Bricsys”
VerboseBimSectionUpdate 			 “1”
_VERNUM		 r/o	 “19.1.06 (UNICODE)”
VersionCustomizableFiles		 r/o	 “344”
VIEWCTR	 	 r/o	 10 7/16”,4 1/2”,0”
VIEWDIR		 r/o	 0”,0”,1”
VIEWMODE		 r/o	 0
VIEWSIZE		 r/o	 297
VIEWTWIST		 r/o	 0
VIEWUPDATEAUTO			 1
VISRETAIN			 1
VOLUMEPREC 			 -1
VOLUMEUNITS 			 “in ft mi µm mm cm m km”
VPROTATEASSOC			 1
VSMAX		 r/o	 -1.0000E+20,-1.0000E+20,-1.0000E+20
VpMaximizedState		 r/o	 0
VSMIN		 r/o	 1.0000E+20,1.0000E+20,1.0000E+20
VTDURATION			 750

appendix B  Summary of Variables & Settings    513

System Variable Name		 Ready-Only	 Default Value		

VTENABLE			 3
VTFPS			 7

W Variables
Wallwidth			 “250”
WarningMessages			 65535
WHIPARC			 1
WHIPTHREAD			 0
WINDOWAREACOLOR			 150
WIPEOUTFRAME 			 1
WMFBKGND			 0
WMFFOREGND			 0
WNDLMAIN			 2
WNDLSCRL			 0
WNDLSTAT			 1
WNDLTABS
WNDLTEXT			 1
WNDPMAIN			 0”,0”
WNDPTEXT			 3’-4”,3’-4”
WNDSMAIN			 101’-2”,66’-11”
WNDSTEXT			 118’-4”,86’
WorkspaceSecurity
WORLDUCS			 1
WORLDVIEW			 1
WRITESTAT		 r/o	 1
WSAUTOSAVE			 1
WSCURRENT			 “2D Drafting”

X Variables
XCLIPFRAME			 2
XDwgFadeCtl			 70
XEDIT			 1
XFADECTL			 50
XLOADCTL			 1
XLOADPATH			 “C:\Users\userid\Documents\”
XNotifyTime			 5
XREFCTL			 0
XRefNotify			 1
XREFOVERRIDE			 0

Z Variables
ZOOMFACTOR			 60
ZOOMWHEEL 			 0

Variables
3DCOMPAREMODE			 3
3DOSMODE 			 11
3dSnapMarkerColor			 5

514    Customizing BricsCAD V19

Notes

APPENDIX C

Concise DCL Reference

DCL allows you to create the these elements in dialog boxes: buttons, popup lists, text edit
boxes, radio buttons, image buttons, sliders, list boxes, and toggles.

These elements are called tiles, and can be clustered together as dialog boxes, boxed columns, boxed
radio columns, radio columns, boxed radio rows, radio rows, boxed rows, rows, and columns. To
make dialog boxes prettier and show graphical information, you can add these elements: images,
spacer 0, text, spacer 1, and spacer.

The base.dcl file defines numerous basic tiles, such as the OK button, so that you don’t need to write
them from scratch.

Each tile works with one or more attributes. Attributes specify the look of the tile and how it works.
For instance, the label tile specifies the text that appears on buttons. A special attribute, called "key,"
allows LISP code to communicate back to the dialog box and make changes, such as changing the
text displayed by the dialog box’s title bar.

This appendix describes every tile and its associated attributes, as well as the LISP functions that
are specific to dialog boxes.

In this reference, the default value of attributes is shown in boldface. For example,
	 alignment = left | right | centered;

shows that "left" is the default value for the Alignment attribute.

The information in this reference applies equally to BricsCAD running on Linux, Mac, and Windows.
When there are differences, the Linux and Mac portions are highlighted in gray.

516    Customizing BricsCAD V19

QUICK REFERENCE OF DCL TILE NAMES

boxed_column 		 Draws a rectangle around a vertical column of tiles.

boxed_radio_column 	 Draws a rectangle around a vertical column of radio tiles.

boxed_radio_row 		 Draws a rectangle around a horizontal row of radio tiles.

boxed_row 		 Draws a rectangle around a horizontal row of tiles.

button 			 Displays a button with text.

column 			 Creates a column of tiles.

dialog 			 Creates a dialog box.

default_dcl_settings	 Sets the level of debugging.

edit_box 			 Displays a text edit box.

image 			 Displays a static image.

image_button 		 Displays a button with an image.

list_box 			 Displays a list.

paragraph		 Concatenates text tiles into vertical paragraphs.

popup_list 		 Displays a droplist.

radio_button 		 Displays a round radio button.

radio_column 		 Creates a column of radio buttons.

radio_row 		 Creates a row of radio buttons.

row 				 Creates a row of tiles.

slider 			 Displays a vertical or horizontal slider bar.

spacer 			 Inserts a rectangular space.

spacer_0 			 Inserts variable-width space.

spacer_1 			 Inserts narrow space.

text 				 Displays static text.

text_part			 Contains a piece of text.

toggle 			 Displays a square checkbox.

	 C  Concise DCL Reference    517

DIALOG

The dialog tile defines dialog boxes.
name : dialog {

	 label = "text";

	 value = "text";

	 initial_focus = "key";

}

NAME

The name attribute identifies dialog boxes by name. This allows you to have define all dialog boxes
in a single DCL file. The LISP routine that accompanies the DCL file uses the load_dialog function
to load the filename.dcl file, and then uses new_dialog to locate the specific dialog box, as follows:
	 (setq dlg-id (load_dialog "c:\\filename"))

	 (new_dialog "name" dlg-id)

TIPS  The dlg-id variable holds the system-assigned identifier for the DCL file. This is typically a number,
such as 30.
	 If the number has a negative value, such as -1, then the DCL file failed to load correctly. You can
use this number to generate error reports.

LABEL

The label attribute displays text on the dialog box’s title bar, such as:
	 label = "Dialog Box";

Label

The value attribute is nearly the same, because it also displays text on the title bar. The difference
is that you can use the LISP set_value function to later change the title.

TIP  You can change the dialog box’s title when the accompanying LISP routine is run. This is useful,
for example, with a file dialog box whose title should reflect the extension of the file extension being
accessed. To change the text, use the (set_tile key value) function, which changes the value of the tile
specified by key.
	 The problem is that BricsCAD cannot widen the dialog box to accommodate long titles. To avoid
cutting off some of the value text, specify a long title with label.

518    Customizing BricsCAD V19

QUICK REFERENCE OF DCL ATTRIBUTES

action			 LISP action expression.
alignment			 Horizontal or vertical position in a cluster.
allow_accept		 Activates the is_default attribute when tile is selected.
aspect_ratio		 Aspect ratio of an image.

audit_level		 Specifies the level of debugging.

big_increment		 Incremental distance to move.

children_alignment		 Alignment of a cluster’s children.
children_fixed_height	 Height of a cluster’s children doesn’t grow during layout.
children_fixed_width	 Width of a cluster’s children doesn’t grow during layout.

color			 Background (fill) color of an image.

edit_limit			 Maximum number of characters that can be entered.
edit_width		 Width of the input field of the tile.

fixed_height		 Prevents height from shrinking.
fixed_width		 Prevents width from shrinking.

fixed_width_font		 Displays text in a fixed pitch font.

height			 Height of the tile.

initial_focus		 Key of the tile with initial focus.
is_bold			 Displays as bold.
is_cancel			 Reacts to the cancel key (Esc).
is_default			 Reacts to the accept key (Enter).
is_enabled		 Tile is initially enabled.

is_tab_stop		 Tile is a tab stop.

key				 Tile name used by the application.

label				 Displayed label of the tile.
layout			 Whether the slider is horizontal or vertical.

list				 Initial values to display in list.

max_value		 Maximum value of a slider.
min_value		 Minimum value of a slider.
mnemonic		 Mnemonic character for the tile.
multiple_select		 List box allows multiple items to be selected.

password_char		 Masks characters entered in edit_box.

small_increment		 Incremental distance to move.

tab_truncate		 Truncates text longer larger than the associated tab stop.

tabs				 Tab stops for list display.

value				 Tile’s initial value.

width			 Width of the tile.

	 C  Concise DCL Reference    519

INITIAL FOCUS

The initial_focus attribute indicates which button or other tile gets the focus. "Focus" refers to the
tile that is highlighted, the one that would be activated when you press the Enter key.

Default button

Usually, the focus is set to the OK button, or to the tile users are likely to assess the most.

KEY

The value of focus is the name of the key tied to the tile. For example, when the key of the OK but-
ton is "okButton," then you enter the following:
	 initial_focus = "okButton";

Exiting Dialog Boxes
Every dialog box must have at least an OK button, so that users can exit the dialog box. You can
use predefined buttons to give your dialog boxes the same look as those of Bricsys-designed dialog
boxes. These are called "subassemblies," and are found in base.dcl.

For instance, to include the standardized button, use the ok_only subassembly like this:
	 name : dialog {

		 label = "Dialog Box";

		 ok_only;

	 }

Notice that subassemblies are not prefixed by the ‘ : ’ character. (If BricsCAD complains about the
ok_only subassembly, then you need to load the base.dcl file with the following bit of code:
	 Command: (load_dialog "base.dcl")

Both OK and Cancel exit the dialog box, but they have different meanings:

Cancel button provided by Windows

Cancel button provided by Linux

•	 OK records changes made by users.

•	 Cancel discards the changes.

After the dialog box is exited, BricsCAD sets the read-only DiaStat system variable (short for "dialog
box status") to one of the following values:

DiaStat	 Meaning				

0	 	 User clicked Cancel to exit dialog box.
1	 	 User clicked OK to exit dialog box.

520    Customizing BricsCAD V19

QUICK REFERENCE OF LISP FUNCTIONS
FOR DIALOG BOXES

(action_tile)		 Assigns action to be evaluated when user selects dialog box tile.

(add_list)			 Adds and modifies strings in current dialog box listbox.

(client_data_tile)		 Associates data from an application with a tile in the dialog box.

(dimX_tile)		 Returns the x-dimension of the dialog box image tile.
(dimY_tile)		 Returns the y-dimension of the dialog box image tile.
(done_dialog)		 Terminates the dialog box.

(end_image)		 Ends creation of dialog box image tile.

(end_list)			 Ends processing of dialog box list box.

(fill_image)		 Draws filled rectangles in dialog boxes.

(get_attr)			 Retrieves the DCL value of the tile’s attribute.

(get_tile)			 Retrieves the value of tile.

(load_dialog)		 Loads .dcl files that define dialog boxes.

(mode_tile)		 Sets the mode of dialog box tiles.

(new_dialog)		 Activates dialog boxes.

(set_tile)			 Sets the value of dialog box tiles.
(slide_image)		 Displays slides in dialog box image tiles.
(start_dialog)		 Displays the current dialog box.
(start_image)		 Starts creating images in dialog boxes.

(start_list)		 Starts processing lists in dialog boxes.

(term_dialog)		 Terminates dialog boxes.

(unload_dialog)		 Unloads .dcl files from memory.

(vector_image)		 Draws vectors in dialog box image tiles.

QUICK REFERENCE OF DIALOG BOXES DISPLAYED
BY LISP FUNCTIONS

(acad_colordlg)		 Displays the Select Color dialog box with only the Index Color tab.
(acad_helpdlg)		 [obsolete] Displays the Help dialog box.
(acad_truecolordlg) 	 Displays the Select Color dialog box with all tabs.
(alert)			 Displays the alert dialog box with customized warning.
(help)			 Displays the Help window.
(initdia)			 Forces display of the next command’s dialog box.

	 C  Concise DCL Reference    521

At the right end of the dialog box’s title bar is an x button. It is equivalent to Cancel, and users can
use it in place of Cancel.

If the dialog box is tight on space, you can leave out the Cancel button, and let users use the x button
on the dialog box’s title bar; just remember to include the OK button.

BUTTON

The button tile defines buttons with text labels.

Label

Mnemonic

Width

Height

: button {

	 label = "text";

	 mnemonic = "char";

	 action = "(LISP function)";

	 key = "text";

	 is_cancel = false | true;

	 is_default = false | true;

	 is_enabled= true | false;

	 is_tab_stop= true | false;

	 width = number;

	 height = number;

	 fixed_height = false | true;

	 fixed_width = false | true;

	 alignment = centered | left | right;

}

LABEL

The label attribute places text on the button tile, such as:
	 label = "More Info";

MNEMONIC

The mnemonic attribute underlines a character. Users can then access the button by pressing Alt
and the letter. For example, the following code underlines the letter “M” in More Info:
	 mnemonic = "M";	

522    Customizing BricsCAD V19

SUMMARY OF TILE REFERENCES

This appendix lists DCL’s tiles and attributes in order of importance, as follows:

Dialog

   Button

    Ok_Only

    Ok_Cancel

    Ok_Cancel_Help

    Ok_Cancel_Help_Errtile

    Ok_Cancel_Help_Info

   Radio_Button

   Toggle

   Image_Button

   Edit_Box

   List_Box

   Popup_list

   Slider

   Text

    Text_Part

    Concatenation

    Paragraph

    Errtile

   Spacer

    Spacer_0

    Spacer_1

    Image

   Column

   Row

    Boxed_Column

    Boxed_Row

    Radio_Column

    Radio_Row

    Boxed_Radio_Column

    Boxed_Radio_Row

	 C  Concise DCL Reference    523

TIPS  As an alternative to the mnemonic attribute, you can prefix characters with & in the label, like this:
	 label = "&More Info";
Make sure that mnemonic characters are not used more than once in each dialog box. For instance, don’t
use M twice in the same dialog box.

ACTION

The action attribute contains LISP code that gets executed when users click the button. (This is
called a "callback.") For example, the code could set the value of system variables, like this:
	 action = "(setvar "highlight" 0)"

TIPS  You cannot, unfortunately, use the LISP command function to execute BricsCAD commands with
the action attribute.

You can use the LISP action_tile function to override the action specified by the action attribute.

KEY

The key attribute gives an identifying tag to the button.

IS_CANCEL

The is_cancel=true attribute specifies that this button is selected when users press the Esc key.
	 is_cancel = true;

Usually, the dialog box is exited right away when users press Esc. In addition, BricsCAD sets the
value of the DiaStat system variable to 0. However, if the button has an action attribute, then the
associated LISP expression is executed before the dialog box is exited.

TIPS  Only one button in the dialog box can be assigned is_cancel=true.
There is no point in having is_cancel=false, except for debugging perhaps.

IS_DEFAULT

The is_default=true attribute specifies that this button is selected when users press the Enter
key — unless another button has the focus.
	 is_default true;

IS_ENABLE

The is_enable=false attribute allows you to gray-out buttons. This tells users that the buttons are
unavailable, usually because some other condition is not satisfied, such as the drawing is in paper
space instead of model space.
	 is_enabled= false;

Grayed-out text

524    Customizing BricsCAD V19

When set to true, the buttons become available. To change the status from false to true, use the
mode_tile function in LISP.

IS_TAB_STOP

The is_tab_stop attribute allows the button to receive focus when users press the Tab key. Pressing
Tab is a popular way for power users to quickly move through the controls of dialog boxes; if the
mouse is busted, then that’s the only way to navigate a dialog box.
	 is_tab_stop= false;

Normally, there is no reason not to allow a button to be a tab stop, and since the default is true,
there’s not much need for this attribute.

WIDTH & HEIGHT

The width and height attributes specify the minimum size of buttons. You can use integers (such
as 5) or real numbers (such as 5.5).

Usually BricsCAD determines the correct size on its own, so you don’t need to specify these attributes.
But if you need to create extra large buttons, such as the one illustrated below, then go right ahead!
	 width = 60;
	 height = 5;

The units are in characters, such as 60 characters wide and 5 lines tall. BricsCAD determines the
size of character based on an average calculated of all letters in the 8-pt "MS San Serif" font used
by Windows for text in dialog boxes. The font cannot be changed.

In the table below, the black areas indicate size of tiles based on a variety of values for the Width
and Height attributes:

Size		 Example								

Height = 1	

Height = 2	

Height = 3	

	 C  Concise DCL Reference    525

												

Width = 30	

Width = 40	

Width = 80	

FIXED_HEIGHT & FIXED_WIDTH

The fixed_height and fixed_width attributes prevent BricsCAD from expanding buttons to fill the
available space. Recall that the height and width attributes specify only the minimum size, and so
adding these two attributes also specifies the maximum size.
	 fixed_height = true;
	 fixed_width = true;

TIP  Use the image_button tile for buttons with colors and images.

ALIGNMENT

The alignment attribute is supposed to shift text left or right on the button. In practice, however,
I find this attribute has no effect; the text is always centered.
	 alignment = left | right | centered;

Bricsys notes that alignment cannot be specified along the long axis of a cluster of tiles. The first and
last tiles align with either end of the row (or column), while the inner tiles are distributed evenly
between them. You can change the distribution with the spacer_0 tile.

PREFABRICATED BUTTON ASSEMBLIES

Bricsys provides the following pre-fabricated button assemblies in base.dcl. This file is described
in detail later in this chapter.

OK_ONLY

The ok_only tile defines the OK button.
ok_only;

526    Customizing BricsCAD V19

OK_CANCEL

The ok_cancel tile defines a horizontal row of the OK and Cancel buttons.
ok_cancel;

OK_CANCEL_HELP

The ok_cancel tile defines a horizontal row of OK, Cancel, and Help buttons.
ok_cancel_help;

OK_CANCEL_HELP_ERRTILE

The ok_cancel_help_errotile tile defines a horizontal row of OK, Cancel, and Help buttons, and
space below for an error message.
ok_cancel_help_errtile;

Space for error message

OK_CANCEL_HELP_INFO

The ok_cancel_help_info tile defines a horizontal row of OK, Cancel, Help, and Info buttons. The
Info button can be used to display a second dialog box with additional information.
ok_cancel_help_info;

RADIO_BUTTON

The radio_button tile defines radio buttons. These buttons are used when only one choice can
be made from a selection, such as the top, left, or right isoplane. When selected, the radio button
shows a black dot; when off, the round button is blank.

If the dialog box has more than one radio button in a cluster, only one can be on at a time. When us-
ers select a radio button, the other one turns off automatically. To have more than one radio button
on at a time, segregate them into clusters with the radio_row or radio_column tiles.

Value = 1

Value = 0

Label

Mnemonic

	 C  Concise DCL Reference    527

: radio_button {
	 action = "(LISP function)";
	 key = "text";

	 label = "text";
	 mnemonic = "char";
	 value = "0" | "1";

	 is_enabled= true | false;
	 is_tab_stop= true | false;

	 height = number;
	 width = number;
	 fixed_height = false | true;
	 fixed_width = false | true;

	 alignment = left | right | centered;
}

LABEL

The label attribute describes the purpose of the radio button to users. The text is always to the
right of the button.

VALUE

The value attribute determines whether the radio button is initially on or off:
	 value = "1";

Value		 Meaning		 Example				

0		 Off		
1		 On		

When you leave out the value attribute, then BricsCAD turns on the first radio button. The other
radio button attributes have the same meanings as for the button tile.

Multiple Radio Buttons
When more than one radio button has value set to 1, then BricsCAD turns on only the last one. as
illustrated below.

If you need more than one radio button to be turned on, then use check boxes instead. Use the
toggle tile to make check boxes.

528    Customizing BricsCAD V19

I mean, if you really want a dialog box to show two or more radio buttons turned on, then the
workaround is to segregate radio buttons with the radio_column tile, as illustrated below.

Here’s the DCL code:
	 : radio_column {
		 : radio_button { label = "Radio Button 1"; value = "1"; }
		 : radio_button { label = "Radio Button 2"; 	 value = "1"; }
	 }
	 : radio_column {
		 : radio_button { label = "Radio Button 3"; value = "1"; }
		 : radio_button { label = "Radio Button 4"; 	 value = "1"; }
	 }

It’s not clear that the four buttons are segregated into two sections, so it makes sense to replace
radio_column with the boxed_radio_column tile to separate them visually.

By default, BricsCAD stacks radio buttons vertically, as shown above. You can use the radio_row
tile to force the radio buttons in a horizontal line — although this format is more difficult for users
to navigate visually.

More on the boxed_ and radio_ tiles later in this appendix.

	 C  Concise DCL Reference    529

TOGGLE

The toggle tile defines check boxes. Check boxes are employed so users can select more than one
choice at a time. (Use radio buttons to limit options to a single choice.)

Value = 1

Value = 0

Label

Mnemonic

: toggle {
	 action = "(LISP function)";
	 key = "text";

	 label = "text";
 	 mnemonic = "char";
	 value = "0" | "1";

	 is_enabled= true | false;
	 is_tab_stop= true | false;

	 height = number;
	 width = number;
	 fixed_height = false | true;
	 fixed_width = false | true;

	 alignment = left | right | centered;
}

LABEL

The label attribute describes to users the purpose of the check box. The text is always to the right
of the button.

VALUE

The value attribute determines whether the toggle is initially on or off:
	 value = "1";

Value		 Meaning		 Example			

0		 Off		
1		 On		

When check boxes lack the value attribute, then they are all turned off by default.

OTHER ATTRIBUTES

The other attributes have the same meaning as for the radio tile.

You can use the boxed_row and boxed_column tiles to segregate toggles into groups.

530    Customizing BricsCAD V19

IMAGE_BUTTON

The image_button tile defines a button tile with an image. This can be the difficult to program,
because some situations require you to correlate x,y coordinates from users’ picks with LISP code.

Width

Height

Key

Dialog_background

Dialog_line

: image_button {
	 action = "(LISP function)";
	 key = "text";

	 aspect_ratio = number;
	 mnemonic = "char";
	 color = colornumber;

	 allow_accept = false | true;
	 is_enabled= true | false;
	 is_tab_stop= true | false;

	 height = number;
	 width = number;
	 fixed_height = false | true;
	 fixed_width = false | true;

	 alignment = left | right | centered;
}

KEY

The key attribute identifies the image tile to the accompanying LISP code, so that the slide image
can be placed in the dialog box.
	 key = "image1";

Images of hatch patterns, fonts, and so on are placed on the image tile through the accompanying
LISP code’s callback function (set_tile) and the key attribute. There are two sources of image you
can use:

•	 SLD slide files, which are created ahead of time with BricsCAD’s MSlide command, and then placed with

LISP’s slide_image function.

•	 Vector lines, which are drawn on-the-fly by LISP’s vector_image function.

ASPECT_RATIO, HEIGHT, & WIDTH

You use any two of these three attributes. The aspect_ratio attribute specifies the ratio between
the height and width of the image tile, and must be used with either the height or the width at-
tribute — but not both. Similarly, if you use the height and width attributes, you cannot use the
aspect_ratio attribute.

	 C  Concise DCL Reference    531

Examples:
	 aspect_ratio = 1.333;

	 height = 3;

Or...
	 aspect_ratio = 1.333;

	 width = 4;

Or...
	 height = 3;

	 width = 4;

COLOR

The color attributes specifies the background color of image tiles. You can use a color name or
number; default = 7 (white or black).

#	 Color Name		 Meaning						

0	 black			 ACI color 0 (black or white) 1
1	 red			 ACI 2 color 1
2	 yellow			 ACI color 2
3	 green			 ACI color 3
4	 cyan			 ACI color 4
5	 blue			 ACI color 5
6	 magenta			 ACI color 6
7	 white			 ACI color 7 (white or black) 1

-1	 graphics_foreground	 Current default color of entities (usually ACI 7). 1

-2	 graphics_background	 Current background color of BricsCAD’s graphics screen.
-3	 blue
-4	 black
-5	 gray
-6	 black
-7	 red
-15	 dialog_background		 Current color of dialog box background (usually gray).
-16	 dialog_foreground		 Current color of dialog box text (usually black).
-18	 dialog_line		 Current color of dialog box lines (usually black).

Notes:
1 The color is white when the background color is dark, but black when the background is light.
2 ACI is short for "BricsCAD Color Index," and refers to the 256 color numbers.

Autodesk notes that "if your image tile is blank when you first display it, try changing its color to
graphics_background or graphics_foreground."

532    Customizing BricsCAD V19

EDIT_BOX

The edit_box tile defines a horizontal tile for entering text.

Edit_width

Label

Value

: edit_box {
	 label = "text";
	 mnemonic = "char";

	 action = "(LISP function)";
	 key = "text";

	 value = "text";
	 fixed_width_font = false | true;
	 password_char = "char";
	 edit_limit = 1-256;
	 edit_width = 1-256;

	 allow_accept = false | true;
 	 is_enabled= true | false;
	 is_tab_stop= true | false;

 	 height = number;
	 width = number;
	 fixed_height = false | true;
	 fixed_width = false | true;

	 alignment = left | right | centered;
}

LABEL

The label attribute displays text that prompts users as to the text or numbers to enter. The label
is always positioned to the left of the text entry box.
	 label = "Edit Box";

MNEMONIC

The mnemonic attribute provides the Alt+shortcut keystroke for the label. Alternatively, prefix a
letter in the label with &.
	 mnemonic = "E";

or
	 label = "&Edit Box";

VALUE

The value attribute displays default text in the edit box, such as "Default text" in the figure above.
For a blank, leave it out, or use value = "".
	 value = "Default text";

	 C  Concise DCL Reference    533

PASSWORD_CHAR

When the edit box is used for entering passwords, then you can specify a character with the pass-
word_char attribute that substitutes for user-entered text, such as "*".
	 password_char = "*";

FIXED_WIDTH_FONT

The fixed_width_font attribute determines whether the edit box uses a fixed width font; more pre-
cisely, the monospaced FixedSys font included with Windows. (This attribute is not documented.)
Only the user text is affected by this attribute; the dialog box text keeps its font.
	 fixed_width_font = true;

EDIT_LIMIT

The edit_limit attribute limits the maximum number of characters users can type in. For text, the
limit usually doesn’t matter; the default is 132. You might want to expand the limit to its maximum
of 256, or reduce it. For example, you may want to limit entry to a single character or digit.
	 edit_limit = 256;

EDIT_WIDTH

The edit_width attribute determines the size of the edit box; it can be an integer or a real number.
Users can enter more characters than this number, up to the maximum determined by edit_limit.
The default width is whatever fits in the dialog box; specifying edit_width = 0 has the same effect.
In many cases, the default width is about 16 characters.
	 edit_width = 186;

I have found that the maximum value of 256 can overwhelm:

OTHER ATTRIBUTES

The remaining attributes have the same meaning as for other tiles.

534    Customizing BricsCAD V19

LIST_BOX

The list_box tile defines tiles that list text items; users can select one or more of them.

List_box

Value

List
Label

: list_box {
 	 action = "(LISP function)";
	 key = "text";

	 label = "text";
	 mnemonic= "char";

	 list = "text 1\ntext 2\ntext 3";
	 value = "0";
	 multiple_select = false | true;;
	 tabs = "number number number";
	 tab_truncate = false | true;
	 fixed_width_font = false | true;

	 allow_accept = false | true;
	 is_enabled= true | false;
	 is_tab_stop= true | false;

	 height = number;
	 width = number;
	 fixed_height = false | true;
	 fixed_width = false | true;

	 alignment = left | right | centered;
}

LIST

The list attribute specifies the text in the list box tile. Each item is separated by the \n metacharacter,
which means "new line." When the list becomes too long for the list box, BricsCAD automatically
adds a scroll bar, as illustrated later.
 	 list = "text 1\ntext 2\ntext 3";

TABS

You can use the tabs attribute to line up text in list boxes. The tabs are specified in characters, such
as at the 5th, 10th, 15th, and 20th character.

	 tabs = "5 10 15 20";

	 C  Concise DCL Reference    535

To specify tabs in the text of the list attribute, use the \t metacharacter (short for "tab"). The fol-
lowing DCL code and figure illustrate the use of \n and \t:
 	 list = "tab 1\tline 1\ntan 2\tline 2\ntab 3\tline 3";

TAB_TRUNCATE

The tab_truncate attribute determines whether text is truncated when longer than the associated
tab stop. Default is false, which means text is not truncated.
	 tab_truncate = true;

FIXED_WIDTH_FONT

The fixed_width_font attribute lets the list use the Windows FixedSys font, a monospace font (a.k.a.
fixed width font), where each character takes up the same width. This can be useful when you need
columns of text to line up; otherwise, fixed width text is not useful, because it makes the dialog box
wider. (This attribute is undocumented.)
	 fixed_width_font = true;

In the figure below , both dialog boxes have width = 30. The fixed width font takes up more space.

VALUE

The value attribute specifies which item is initially highlighted. The default, 0, means the first item
is highlighted. If you want more than one item highlighted, then separate the digits with spaces.

The following examples highlights items #2 and #3:
	 value = "1 2";

536    Customizing BricsCAD V19

Multiple_Select
The multiple_select attribute determines whether users can select more than one item from the
list. Users need to hold down the Ctrl key to select more than one item, or the Shift key to select a
sequential range of items.

  
Left: Selecting random items with the Ctrl key held down.

Right: Selecting sequential items with the Shift key held down.

	 multiple_select = false;

When this attribute is set to false (the default setting), then the value attribute is restricted to the
first digit. For example, value = "1 2" becomes "1".

HEIGHT

The height attribute determines the height of the list box in lines. For example, height = 7 means
that the list box is seven lines tall, but has room for only six items, because the seventh line is used
for the label.

When height is set to 0 or is not included, then the list box is stretched to accommodate all items
in the list, if possible.

WIDTH

The width attribute determines the width of the list box. Width is measured in characters.

OTHER ATTRIBUTES

The remaining attributes operate identically to those in other tiles.

	 C  Concise DCL Reference    537

POPUP_LIST

The popup_list tile displays a droplist. Despite the name, this tile drops down, not up.

  
Left: Popup list before...

Right: ...and after being selected by the user.

: popup_list {
	 action = "(LISP function)";
	 key = "text";

	 label = "text";
	 mnemonic = "char";

	 list = "text 1\ntext 2\ntext 3";
	 tabs = "number number number";
	 tab_truncate = false | true;
	 value = "text";
	 fixed_width_font = false | true;
	 edit_width = 1-256;

	 is_enabled= true | false;
	 is_tab_stop= true | false;

	 height = number;
	 width = number;
	 fixed_height = false | true;
	 fixed_width = false | true;

	 alignment = left | right | centered;
}

LABEL

The label attribute provides the prompt text for the droplist.
	 label = "Popup list: ";

MNEMONIC

As with other tiles, you can specify the Alt+shortcut with the & prefix, or else use the mnemonic
attribute to indicate the shortcut keystroke.
	 label = "&Popup list: ";

	 mnemonic = "P";

LIST

The list attribute specifies the text in the droplist tile. Each item is separated by the \n metacha-
racter. When the list becomes too long for the droplist, BricsCAD automatically adds a scroll bar.
 	 list = "text 1\ntext 2\ntext 3";

538    Customizing BricsCAD V19

TABS

If you need text to line up in columns, use the tabs attribute to specify the tab spacing.
	 tabs = "10 20 30";

Then use the \t metacharacter to specify where the tabs occur in the list attribute.
	 list = "text 1\ttext 2\ttext 3";

TAB_TRUNCATE

The tab_truncate attribute determines whether text is truncated when longer than the associated
tab stop. Default is false, which means it is not truncated.
	 tab_truncate = true;

VALUE

The value attribute specifies which item is initially selected. The first item is #0 (the default). Use
value = "" for no initial selection.
	 value = "1";

#0

#1

#2

OTHER ATTRIBUTES

The other attributes are identical to those described for other tiles.

SLIDER

The slider tile defines vertical and horizontal sliders.

Small_increment
Min_value

Label

Max_value
Big_increment

: slider {
	 action = "(LISP function)";
	 key = "text";

	 label = "text";
 	 mnemonic = "char";

	 layout = horizontal | vertical;
	 max_value = integer;
	 min_value = integer;
	 big_increment = integer;
	 small_increment = integer;

	 C  Concise DCL Reference    539

	 value = "text";

	 height = number;
	 width = number;
	 fixed_height = false | true;
	 fixed_width = false | true;

	 alignment = left | right | centered;
}

LABEL & MNEMONIC

The label and mnemonic attributes name the slider. Alternatively, you could use the boxed_row
attribute to give the slider its label, as illustrated below:

	 : boxed_row {
		 label = "Slider: "; mnemonic = "S";
		 : slider {
			 max_value = 100;
			 min_value = -100;
			 big_increment = 10;	
			 small_increment = 1;
			 value = "0";
		 }
	 }

In addition to not labeling the slider, this tile provides no way to indicate to users the meaning of
the minimum and maximum values. The workaround is to add a row of text underneath the slider,
as illustrated here.

Notice that you need to use the spacer tile to position the three pieces of text appropriately:
	 : row {
		 : text { value = "-100"; alignment = left; }
		 : spacer {width = 11; }
		 : text { value = "0"; alignment = centered; }
		 : spacer {width = 8; }
		 : text { value = "100"; alignment = right; }
	 }

LAYOUT

The layout attribute determines if the slider is horizontal (default) or vertical, as illustrated below.
	 layout = vertical;

540    Customizing BricsCAD V19

Horizontal sliders don’t need to have a height or width attribute, because the default values are just
fine. Vertical sliders, need the height specified, otherwise they end up with no height, as illustrated
below. I suggest setting height = 10.

Using both a horizontal and vertical slider lets you create scroll bars for panning images.

MAX_VALUE

The max_value attribute specifies the upper limit of the scroll bar; default = 10000. It limits the
maximum value when the slider is at the right (or top) end of the bar. You can use any integer be-
tween -32768 and 32767. If you need larger values, then use LISP code to multiply them.
	 max_value = 32767;

Min_value Max_value

MIN_VALUE

The min_value attribute specifies the lower limit of the scroll bar; default = 0. It limits the mini-
mum value when the slider is at the left (or bottom) end. You can use any integer between -32768
and 32767. To reverse the action of the scroll bar, use a larger value for min_value and a smaller
one for max_value.
	 min_value = -32768;

BIG_INCREMENT

The big_increment attribute specifies the value of clicking the bar on either side of the slider. The
default is 0.1 of the range between max_value and min_value. You can use any integer between
the values of those two attributes.
	 big_increment = 100;

Small_increment Big_increment

SMALL_INCREMENT

The small_increment attribute specifies the value of clicking the arrows. The default is 0.01 of the
range between max_value and min_value.
	 small_increment = 1;

	 C  Concise DCL Reference    541

VALUE

The value attribute specifies the slider’s initial position. Even though the value is an integer, it must
be enclosed in quotation marks. The default is the same as min_value.
	 value = "1000";

HEIGHT

The height attribute specifies the size of vertical sliders; it has no effect on horizontal sliders. Height
is measured in lines (of text). You have to specify a height for vertical sliders to avoid the problem
described on the previous page.
	 height = 10;

WIDTH

The width attribute specifies the size of horizontal sliders; it has no effect on vertical sliders. Width
is measured in character (of text). You don’t have to specify a width for horizontal sliders, because
the default is satisfactory.
	 width = 40;

FIXED_HEIGHT & FIXED WIDTH

The fixed_height and fixed_width attributes prevent DCL from expanding the slider to fit available
space in the dialog box. Default in both cases is false, which means the height and width are not
fixed. I suspect these attributes actually have no effect.
	 fixed_height = true;
	 fixed_width = true;

ALIGNMENT

The alignment attribute is supposed to shift the slider bar left or right, but I don’t see that this
attribute has any effect. The default is centered.

	 alignment = right;

542    Customizing BricsCAD V19

TEXT

The text tile displays text in the dialog box. The text is static when specified in the DCL file, or
dynamic when specified in the LSP file.

Label

: text {
	 label = "text";
	 is_bold = false | true;

	 value = "text";
	 key = "text";

	 height = number;
	 width = number;
	 fixed_height = false | true;
	 fixed_width = false | true;

	 alignment = left | right | centered;
}

LABEL

The label attribute specifies the text displayed by the dialog box. It is recommended that use this
attribute for static text — text that doesn’t change.
	 label = "Text label";

VALUE

The value attribute also specifies text displayed by dialog box. Bricsys recommends you use this
attribute for dynamic text — text that’s specified by the accompanying LISP code. For dynamic text,
value is set to null, as shown here:
	 value = "";

Make sure you include the width attribute so that there is sufficient space for the text message.
BricsCAD does not wrap text that is too long for the dialog box; text is truncated. And include the
key attribute so that the LISP code can identify the text tile.
	 : text {
		 value = "";
		 key = "textField1";
		 width = 40;
	 }

To display error messages or feedback on users’ choices, use the set_tile function to assign text to
the tile in the LISP code, like this:
	 (set_tile "textField1" "Error: Cannot set that value.")

	 C  Concise DCL Reference    543

The combination of DCL and LSP code results in the following display by the dialog box:

TIP  If both label and value are used in the text tile code, however, then value’s text is displayed by the
dialog box.

IS_BOLD

The is_bold attribute should boldface the text, but appears to not work.
	 is_bold = true;

HEIGHT & WIDTH

The height and width attributes size the text tile. Height starts measuring from the top of the text,
and is measured in lines. Width starts from the left end of the text, and is measured in characters.

	 height = 5;

	 width = 40;

Width = 40;

Height = 5;

FIXED_HEIGHT & FIXED WIDTH

The fixed_height and fixed_width attributes prevent DCL from expanding the text area to fit
available space in the dialog box. Default in both cases is false, which means the height and width
are not fixed.
	 fixed_height = true;

	 fixed_width = true;

ALIGNMENT

The alignment attribute shifts the text to the left, right, or center of its width.

	 alignment = right;

544    Customizing BricsCAD V19

TEXT_PART

The text_part tile displays text without margins, the blank space around text. It is meant to combine
several pieces of text into one line, when used with the concatenation tile.
	 : text_part { 	

		 label = "text";

	 }

CONCATENATION

The concatenation tile strings together two or more text and/or text_part tiles. In the figure below,
I have outlined in blue the two sections of text.

	 : concatenation {

		 : text_part { label = "A small step"; }

		 : text_part { label = "for a man."; }

	 }

PARAGRAPH

The paragraph tile stacks lines of text, as illustrated below.

	 : paragraph {

		 : text_part { label = "A small step"; }

		 : text_part { label = "for a man."; }

	 }

Errtile
The errtile tile defines a horizontal space for reporting error messages. It appears at the bottom
of dialog boxes, and its key is "error."
	 errtile;

	 C  Concise DCL Reference    545

You use it in conjunction with the set_tile function in the accompanying LISP code.
	 (set_tile "error" "Error: Cannot set that value.")

SPACER

The spacer tile defines a vertical and/or horizontal space. The figure shows a 10x50 spacer outlined
in blue, below. The spacer is measured in characters.

Width = 50;

Height = 10;

: spacer {
	 height = number;
	 width = number;
	 fixed_height = false | true;
	 fixed_width = false | true;

	 alignment = left | right | centered;
}

SPACER_0

The spacer_0 tile defines a variable-width space that spaces itself automatically.
	 spacer_0;

SPACER_1

The spacer_1 tile defines a very narrow space.
	 spacer_1;

546    Customizing BricsCAD V19

IMAGE

The image tile defines a rectangular area for displaying an image — it’s kind of like a colored
spacer. It can display things like text font samples, hatch pattern samples, color samples, or icons
that represent drawing and editing commands.

The easiest form is is the color sample, as illustrated by the yellow rectangle below, because it is
merely specified by the color attribute.

Images of hatch patterns, fonts, and so on can be placed on the image tile through the accompany-
ing LISP code’s callback function (set_tile) and the key attribute.

There are two sources of image you can use:

•	 SLD slide files, which are created ahead of time with the command that makes slides in BricsCAD, and then

placed with LISP’s slide_image function.

•	 Vector lines, which are drawn on-the-fly by LISP’s vector_image function.
 : image {
 	 action = "(LISP function)";
	 key = "text";
	 value = "text";
	 mnemonic = "char";
	 color = colornumber;
	 aspect_ratio = number;
	 height = number;
	 width = number;
	 is_enabled= true | false;
	 is_tab_stop= true | false;
	 fixed_height = false | true;
	 fixed_width = false | true;
	 alignment = left | right | centered;
}

KEY

The key attribute identifies the image tile to the accompanying LISP code, so that the slide image
can be placed in the dialog box.
	 key = "image1";

Value and Mnemonic
The value and mnemonic attributes appear to have no effect.

COLOR

The color attribute defines the color of the image tile. When you leave out this attribute, the color
is black (default).

	 C  Concise DCL Reference    547

Use the same color numbers as for the image_button tile. A popular number is -15, which displays
the same color as that of the dialog box’s background — usually gray.
	 color = -15;

Number	 Color Name		 Meaning					

...		...			 Default color is black
0		 black			 ACI color 0 (black or white) 1
1		 red			 ACI 2 color 1
2		 yellow			 ACI color 2
3		 green			 ACI color 3
4		 cyan			 ACI color 4
5		 blue			 ACI color 5
6		 magenta			 ACI color 6
7		 white			 ACI color 7 (white or black) 1

-1		 graphics_foreground	 Current default color of entities (usually ACI 7). 1

-2		 graphics_background	 Current background color of BricsCAD’s graphics screen.
-3		 blue
-4		 black
-5		 gray
-6		 black
-7		 red
-15		 dialog_background	 Current color of dialog box background (usually gray).
-16		 dialog_foreground	 Current color of dialog box text (usually black).
-18		 dialog_line		 Current color of dialog box lines (usually black).

Notes:
1 The color is white when the background color is dark, but black when the background is light.
2 ACI is short for "BricsCAD Color Index," and refers to the 256 color numbers.

ASPECT_RATIO, HEIGHT, & WIDTH

You use any two of these three attributes. The aspect_ratio attribute specifies the ratio between
the height and width of the image tile, and must be used with either the height or the width at-
tribute — but not both. Similarly, if you use the height and width attributes, you cannot use the
aspect_ratio attribute. Examples:
	 aspect_ratio = 1.333;
	 height = 3;

Or...
	 aspect_ratio = 1.333;
	 width = 4;

Or...
	 height = 3;
	 width = 4;

548    Customizing BricsCAD V19

COLUMN

The column tile defines a vertical column of tiles. This tile is not normally needed, because tiles are
stacked vertically by default. You would use it when you want two columns of tiles in the dialog box.

Width = 12;

Height = 5;

Label

: column {
	 label = "text";
	 height = number;
	 width = number;
	 fixed_height = false | true;
	 fixed_width = false | true;
	 children_fixed_height = false | true;
	 children_fixed_width = false | true;
	 alignment = left | right | centered;
	 children_alignment = left | right | centered;
}

LABEL

The label attribute provides a title for the column. Curiously, when the label is not used, then the
column is unboxed; when a label is used, the column is boxed automatically — jsut as if it were the
boxed_column tile.
	 label = "Column";

HEIGHT & WIDTH

BricsCAD normally sizes the column automatically. You can use the height and width attributes to
specify a larger size; height is measured in lines of text, width in characters.

	 height = 10;

	 width = 40;

CHILDREN_FIXED_HEIGHT, CHILDREN_FIXED_WIDTH, & CHILDREN_ALIGNMENT

The children_fixed_height and children_fixed_width attributes fix the height and width of clus-
tered tiles; these attributes can be overridden by the children’s attributes.
	 children_fixed_height = true;

	 children_fixed_width = true;

The children_alignment attribute sets the alignment of clustered tiles; this attribute can be over-
ridden by the children’s alignment attributes.
	 children_alignment = centered;

	 C  Concise DCL Reference    549

BOXED_COLUMN

The boxed_column tile places a box around a column of tiles. It is identical to the column tile,
except that the box appears whether or not the tile has a label. The figure below illustrates the box
without a label.

: boxed_column {
	 label = "text";
	 height = number;
	 width = number;
	 children_fixed_width = false | true;
	 fixed_height = false | true;
	 fixed_width = false | true;
	 children_fixed_height = false | true;
	 alignment = left | right | centered;
	 children_alignment = left | right | centered;
}

RADIO-COLUMN & BOXED_RADIO_COLUMN

The radio_column and boxed_radio_column tiles define vertical columns for radio buttons. The
only difference from the boxed_column and column tiles is the addition of the value attribute,
which specifies which radio button is turned on.
: radio_column {		 // or : boxed_radio_column {
 	 label = "text";
	 value = "number";
	 height = number;
	 width = number;
	 fixed_height = false | true;
	 fixed_width = false | true;
	 children_fixed_height = false | true;
	 children_fixed_width = false | true;
	 alignment = left | right | centered;
	 children_alignment = left | right | centered;
}

VALUE

The value attribute specifies which radio button is turned on, the first button being #0.
	 value = "2";

550    Customizing BricsCAD V19

LISP Functions for Dialog Boxes

Dialog boxes are designed by DCL files and displayed by LISP routines. The most basic LISP routine
to load, display and unload dialog boxes looks like this:
(defun c:functionName (/ dlg-id)
	 (setq dlg-id (load_dialog "fileName"))
	 (new_dialog "dialogName" dlg-id)
	 ; Insert get_tile, set_tile, action_tile,
	 ; and other functions here.
	 (start_dialog)
	 (unload_dialog dlg-id)
)

A fileName.dcl file specifies the layout of the dialog box. The most basic file looks like this:
	 dialogName : dialog {
		 // Insert tiles here.
		 ok_only;
	 }

This section of the chapter describes the LISP functions that interact with dialog boxes in the fol-
lowing order:
load_dialog
	 new_dialog
	 start_dialog
	 done_dialog
	 term_dialog

get_tile
	 set_tile
	 get_attr
	 mode_tile
	 action_tile
	 client_data_tile
	

start_list
	 add_list
	 end_list

start_image
	 slide_image
	 fill_image
	 vector_image
	 dimx_tile
	 dimy_tile
	 end_image

alert
	 help
	 acad_helpdlg
	 acad_colordlg
	 acad_truecolordlg
	 initdia

	 C  Concise DCL Reference    551

ROW & BOXED_ROW

The row and boxed_row tiles define a horizontal row of other tiles, called "children" or "clustered
tiles." Like columns, including a label to the row tile adds the box; no label, no box. Otherwise, the
two tiles are identical.

: row {				 // or : boxed_row {
	 label = "text";
	 height = number;
	 width = number;
	 fixed_height = false | true;
	 fixed_width = false | true;
	 children_fixed_height = false | true;
	 children_fixed_width = false | true;
	 alignment = left | right | centered;
	 children_alignment = centered | top | bottom;
}

OTHER ATTRIBUTES

Attributes are identical to those of the column tile, except that the children_alignment attribute
is vertically oriented: top, bottom, or centered.

RADIO_ROW & BOXED_RADIO_ROW

The radio_row tile defines a horizontal row of radio buttons.
: radio_row {			 // or : boxed_radio_row {
	 label = "text";
	 value = "number";

	 height = number;
	 width = number;
	 fixed_height = false | true;
	 fixed_width = false | true;
	 children_fixed_height = false | true;
	 children_fixed_width = false | true;

	 alignment = left | right | centered;
	 children_alignment = centered | top | bottom;
}

VALUE

The value attribute specifies which radio button is turned on, the first button being #0.
	 value = "2";

552    Customizing BricsCAD V19

LOAD_DIALOG

The load_dialog function loads .dcl files that define dialog boxes, and returns a fileid (the identify-
ing number assigned by the operating system to open files) handle.
(load_dialog "dclFile")

	 dclFile — name of the .dcl file. It is in quotation marks. Remember to use double-slash path separators, as

shown below. The ".dcl" extension is not required.
	 (load_dialog "c:\\filename"))

This function is usually used with setq to store the value of the handle, as follows:
(setq dclId (load_dialog "c:\\filename"))

This function returns a fileid handle such as 30, when successful, or -1 if not.

NEW_DIALOG

The new_dialog function actives activates a named dialog box. This function is needed because
.dcl files can contain more than one dialog box definition. Thus, load_dialog is used to load the .dcl
file, and then new_dialog is used to access the specific dialog box.
(new_dialog dlgName dclId action screenPt)

	 dlgName — string identifying the dialog box in the .dcl file.

	 dclId — DCL fileid handle retrieved earlier by the load_dialog function.

	 action — [optional] string containing the LISP expression that executes as default action when users picks

tiles that don’t have a DCL action or LSP callback assigned by the action_tile function.

	 screenPt — [optional] 2D point list specifying the x,y-location of the dialog box’s upper left corner of the Bric-

sCAD window. Use ‘(-1 -1) to open the dialog box in the center of the BricsCAD window. To use this argument

without the action argument, enter "", as follows:
	 (new_dialog dlgName dcl_id "" ‘(10,10))

This function returns T when successful, or nil if not.

START_DIALOG

The start_dialog function displays the dialog box. Before this function is executed, you should set
up callbacks and other functions. This function has no arguments.
(start_dialog)

This function returns 1 when users exit the dialog box by clicking OK, or 0 if they click the Cancel
button. A -1 is returned when the dialog box is closed by the term_dialog function.

	 C  Concise DCL Reference    553

DONE_DIALOG

The done_dialog function closes the dialog box.
(done_dialog status)

	 status — positive integer returned by start_dialog, the meaning of which the application determines. For

this to work, done_dialog must be called from a callback function such as action_tile.

This function returns a 2D point list in the form of '(x,y). It identifies the position of the upper-left
corner of the dialog box at the time the user exited it. This allows you to reopen the dialog box in
the same location.

TERM_DIALOG

The term_dialog function terminates dialog boxes. It is called by BricsCAD when applications (LISP
routines) terminate while .dcl files are still open. This function has no arguments.
(term_dialog)

This function always returns nil.

UNLOAD_DIALOG

The unload_dialog function unloads .dcl files from memory.
(unload_dialog dclId)

	 dclId — specifies the file-id handle first acquired by the load_id function.

This function always returns nil.

GET_TILE

The get_tile function retrieves the values of tiles.
(get_tile key)

	 key — identifies the tile to be accessed.

This function returns a string containing the value of the tile’s value attribute.

554    Customizing BricsCAD V19

SET_TILE

The set_tile function sets the value of dialog box tiles.
(set_tile key value)

	 key — identifies the tile to be processed.

	 value — specifies a string that contains the new value to be assigned to the tile’s value attribute.

This function returns the new value of the tile.

GET_ATTR

The get_attr function retrieves the DCL value of the tile’s attribute.
(get_attr key attribute)

	 key — identifies the tile to be processed.

	 attribute – identifies the attribute whose value is to be retrieved.

This function returns a string with the attribute’s as found in the DCL file.

MODE_TILE

The mode_tile function sets the mode of dialog box tiles. This allows you to change, for example,
buttons from active (normal) to inactive (grayed out).
(mode_tile key mode)

	 key — identifies the tile to be processed.

	 mode — specifies the action to be applied to the tile:

Mode	 Meaning				

0	 Enables the tile.
1	 Disables the tile (grays it out).
2	 Sets focus to the tile.
3	 Selects the contents of the edit box.
4	 Toggles image highlighting.

This function returns nil.

ACTION_TILE

The action_tile function assigns action to be evaluated when users select the dialog box’s tile.
(action_tile key action)

	 C  Concise DCL Reference    555

TIP  The action assigned by this function overrules the action defined by the tile’s action attribute, as well
as the action specified by the new_dialog function.

	 key — identifies the tile to be processed.

	 action — a string that specifies the action, usually an LISP function. (LISP’s command function cannot be

used, unfortunately.) You can use the following metacharacters:

Metacharacter	 Meaning					

$value		 Current value of the tile.
$key		 Name of the tile.
$data		 Application-specific data set by client_data_tile.
$reason	 Callback reason.
$x and $y	 Image’s x,y coordinates.

This function returns T.

CLIENT_DATA_TILE

The client_data_tile function associates data from a function with a tile in the dialog box.
(client_data_tile key data)

	 key — identifies the tile to be processed.

	 data — specifies the string containing the data.

TIP  Functions can refer to this data as $data.

This function returns nil.

START_LIST

The start_list function starts processing list boxes and popup boxes.
(start_list key operation index)

	 key — identifies the list box or popup box being processed.

	 operation — [optional] specifies the operation being performed; default is to delete the exiting list, and

replace it with a new one specified by the add_list function. The operations are:

Operation	 Meaning					

1 		 Change selected list contents	
2 		 Append new list entry
3 		 Delete old list and create new list (the default)

	 index — [optional] specifies which list item to modify; default is #0, the first item.

This function returns the name of the list.

556    Customizing BricsCAD V19

TIPS  In all cases, you use the list-related functions in this order:
	 (start_list)
	 (add_list)
	 (end_list)

You are warned against using the set_tile function between start_list and end_list, because that would
change the nature of the list.

All actions by the add_list function apply only to the list specified by start_list; to switch to a different list,

use end_list and then start_list.

ADD_LIST

The add_list function adds or modifies strings in list and popup boxes, depending on the operation
specified by start_list.
(add_list strings)

	 strings — specifies the list of items to add or replace in the list. The string uses quotation marks to separate

items in the list, as follows:
	 (add_list "firstItem" "secondItem" "thirdItem")

This function returns the string, if successful; otherwise nil, if not.

END_LIST

The end_list function ends processing of list and popup boxes.
(end_list)

This function returns nil.

START_IMAGE

The start_image function starts creating vector or slide images in dialog boxes.
(start_image key)

	 key — specifies the key name of the image tile.

This function returns the value of key; otherwise nil, if unsuccessful.

TIP  Typically, you use the image-related functions in this order:
	 (start_image)
	 (fill_image)
	 (slide_image) or (vector_image)
	 (end_image)

	 C  Concise DCL Reference    557

SLIDE_IMAGE

The slide_image function displays slides in dialog box image tiles.
(slide_image x y width height sldName)

	 x — specifies the number of pixels to offset the image from the upper-left corner of the tile, in the x direc-

tion.

	 y — specifies the number of pixels to offset the image from the upper-left corner of the tile, in the y direc-

tion.

	 width — specifies the width of the image in pixels.

	 height — specifies the height of the image in pixels.

	 sldName — specifies the name of the slide image to display, which can be in an SLD slide file or SLB slide

library file. When in a library, use this format:
	 (slide_image 0 0 40 30 sldlibName(sldName))

0,0

Dimx_tile, Dimy_tile

sldName

This function returns the name of the sldName as a string.

TIPS   X and Y are always positive.

The coordinates of the upper left corner are 0,0.

You can get the coordinates of the lower-right corner through dimx_tile and dimy_tile, like this:
	 (slide_image 0 0 (dimx_tile “slide_tile”) (dimy_tile “slide_tile”) “sldName”)

FILL_IMAGE

The fill_image function draws filled rectangles in dialog boxes.
	 (fill_image x y width height color)

	 x — specifies the number of pixels to offset the image from the upper-left corner of the tile, in the x direc-

tion.

	 y — specifies the number of pixels to offset the image from the upper-left corner of the tile, in the y direc-

tion.

	 width — specifies the width of the image in pixels.

	 height — specifies the height of the image in pixels.

	 color — specifies the color using ACI, or one of the following special numbers:

558    Customizing BricsCAD V19

Number		 Meaning						

-2		 Current background color of BricsCAD’s drawing area.
-15		 Current background color of the dialog box.
-16		 Current text color of the dialog box.
-18		 Current color of dialog box lines.

This function returns an integer representing the ACI fill color.

TIP  This function must be used between the start_image and end_image functions.

VECTOR_IMAGE

The vector_image function draws vectors in dialog box image tiles.
	 (vector_image x1 y1 x2 y2 color)

x1,y1
Background color

x2,y2 Line color

	 x1 — specifies the x coordinate of the starting point.

	 y1 — specifies the y coordinate of the starting point.

	 x2 — specifies the x coordinate of the starting point.

	 y2 — specifies the y coordinate of the starting point.

	 color — specifies the color using ACI, or one of the special numbers listed above.

TIP  One vector (line) is drawn with each call of this function. The line is drawn from x1,y1 to x2,y2.

DIMX_TILE & DIMY_TILE

The dimx_tile function returns the x-dimension of the image tile’s lower right corner; the dimx_tile
function does the same for the y-dimension.
(dimx_tile key)

(dimy_tile key)

	 key — specifies the key name of the image tile.

x-1, y-1

0,0

These functions return the "x-1" width and "y-1" height of the tile.

	 C  Concise DCL Reference    559

TIPS  Caution: These functions return x,y coordinates are one less than the total x and y dimensions of the
tile, because the upper-right corner is 0,0.

These functions are meant for use with the slide_image, fill_image, and vector_image functions.

END_IMAGE

The end_image function signals the end of the image tile’s definition.
(end_image)

This function returns nil.

560    Customizing BricsCAD V19

DIALOG BOXES DISPLAYED BY LISP FUNCTIONS
The following LISP functions display BricsCAD dialog boxes.

Alert
The alert function displays the alert dialog box with customized warning. You can use the \n
metacharacter to include line breaks.
(alert "Help me!\nI’ve fallen and I can’t get up!")

Help)
The help function displays the Help window.

Acad_HelpDlg
The acad_helpdlg function displays the old-style Help dialog box with .hlp files.
(acad_helpdlg "acadctxt.hlp" "topic")

AcadColorDlg
The acad_colordlg function displays the Select Color dialog box with just the Index Color tab.
(acad_colordlg colorNum flag)

	 colorNum — specifies the default color number; ranges from 0 to 256.This integer is a required argument,

even when you don’t want to specify a default.

		 0 = ByBlock color.

		 256 = ByLayer color.

	 flag — [optional] disables the ByLayer and ByBlock buttons when set to nil.

For example, to open the Select Color dialog box, set red (1) as the default color, and gray out the
By-buttons, use this form of the function:
(acad_colordlg 1 nil)

This function returns the number of the color selected by the user, or nil when the user clicks Cancel.

Acad_TrueColorDlg
The acad_truecolordlg function displays the Select Color dialog box with all tabs.
(acad_truecolordlg color flag byColor)

	 color — specifies the the default color as a dotted pair, where the first value is the DXF code for the type of

color specification:

		 62 = ACI (index color).

		 420 = TrueColor spec in RGB (red-green-blue) format.

		 430 = color book name (not supported by BricsCAD).

	 C  Concise DCL Reference    561

	 Use the following formats:

Color Format		 Dotted Pair Format			 Example for Red			

ACI			 (62 . ColorIndex)			 (62 . 1)
TrueColor		 (420 . "red,green,blue")		 (420 . "255,0,0")
Color Book		 (430 . "colorbook$colorname")	 (430 . "RAL CLASSIC$RAL 3026")

	 flag — [optional] disables the ByLayer and ByBlock buttons when set to nil.

	 byColor — [optional] sets the value of ByLayer and ByBlock color; use the same format as for color.

This function returns the color selected by the user in dotted-pair format. The list may contain more
than one dotted-pair; the last one is the one selected by the user. For example, if the user selects
from a color book, then the list contains the 430 pair (specifying the color book), as well as a 420
pair containing the TrueColor value and a 62 pair describing the closest ACI value. Color books are
not supported by Bricscdad.

Nil is returned when the user clicks Cancel.

InitDia
The initdia function forces the display of the dialog box of the following command, such as:
(initdia flag)

(command "image")

	 flag — [optional] when 0, resets command to display prompts at the command line.

This function is meant for commands that normally display their prompts at the command line
during LISP routines. These include AttDef, AttExt, Hatch (BHatch in older versions of BricsCAD),
Block, Color, Image (ClassicImage in BricsCAD 2007), ImageAdjust, Insert, Layer, Linetype, MText,
Plot, Rename, Style, Toolbar, and View.

This function always returns nil.

562    Customizing BricsCAD V19

Notes

APPENDIX D

Concise LISP Reference

This appendix offers an alphabetical list of functions for the LISP programming language:

	 Blue text indicates functions unique to BricsCAD (not found in AutoLISP).

	 Green text indicates functions specific to controlling DCL dialog boxes.

	 Italicized text indicates parameter(s).

	 [square brackets] indicate optional parameters.

	 ellipsis ... indicate that additional parameters are permitted

	 Pi is defined in LISP as a constant, 3.141...

564    Customizing BricsCAD V20

LISP Function Summary

A

(abs) Returns absolute value of number
(abs number)

(acad_colordlg) Displays the Select Color dialog box
(acad_colordlg color-number [flag])

(acad_strlsort) Sorts list of strings in alphabetical order
(acad_strlsort list)

(action_tile) Responds when the user clicks a dialog box tile
(action_tile key expression)

(acos) Returns the arc cosine of x.
(acos x)

(add_list) Adds text to an existing dialog box string
(add_list string)

(ads) Reports which applications are loaded into BricsCAD
(ads)

(alert) Displays a message box
(alert string)

(alloc) Sets the memory segment size for LISP
(alloc integer)

(and) Returns logical AND of the supplied arguments
(and expression)

(angle) Returns the angle (in radians) of the line defined by two points
(angle point1 point2)

(angtof) Converts string representation of angle to radians
(angtof string [mode])

(angtos) Converts angle (radians) to string representation
(angtos angle [mode [precision]])

(append) Appends list arguments to one list
(append list1 list2)

(apply) Applies the specified function for each argument supplied iin the list
(apply function list)

(arx) Returns a list of the currently loaded ObjectARX applications
(arx)

(arxload) Loads an ObjectARX application
(arxload application [onfailure])

(arxunload) Unloads an ObjectARX application
(arxunload application [onfailure])

	 D  Concise LISP Reference    565

(ascii) Converts the first character of string to its ASCII char code (integer)
(ascii string)

(asin) Returns the arc sine of x.
(asin x)

(assoc) Finds the first matching item in the list
(assoc item list)

(atan) Returns arctangent
(atan number1 [number2])

(atanh) Returns the hyperbolic arc tangent of x.
(atanh x)

(atof) Converts a string to a real number
(atof string)

(atoi) Converts a string to an integer
(atoi string)

(atom) Confirms that an item is an atom
(atom item)

(atoms-family) Returns a list of the currently defined symbols
(atoms-family format [symbol1 symbol2])

(autoload) Loads the LISP application automatically when one of its commands is used
(autoload application list)

B

(boole) Applies the bitwise Boolean function
(boole function integer1 integer2)

(boundp) Confirms that this item has a value bound to it
(boundp item)

C

(caddr) Returns the third item of the list
(caddr list)

(cadr) Returns the second item of the list
(cadr list)

(car) Returns the first item of the list
(car list)

(cdr) Returns everything in the list except the first item
(cdr list)

(ceiling) Returns the smallest integer that is not smaller than x.
(ceiling x)

(chr) Converts the integer (ASCII char code) to a single-character string
(chr integer)

566    Customizing BricsCAD V20

(client_data_tile) Associates data with a dialog box tile
(client_data_table key data)

(close) Close an open file
(close file-descriptor)

(command) Launches the BricsCAD command
(command cmd [arguments])

(cond) Compares conditional statements
(cond (statement1 result1))

(cons) Adds this item to the beginning of the list
(cons item list)

(cos) Calculates the cosine
(cos angle)

(cosh) Returns the hyperbolic cosine of x.
(cosh x)

(cvunit) Converts a value from one unit of measurement to another
(cvunit value from to)

D

(defun) Defines a LISP function
(defun [c:] name ([arg1 arg2] / [local-var1 local-var2]) expression)

(dictadd) Adds a nongraphical object to a dictionary
(dictadd ename symbol newobj)

(dictnext) Finds the next item in a dictionary
(dictnext ename [rewind])

(dictremove) Removes an item from a dictionary
(dictremove ename symbol)

(dictrename) Renames a dictionary entry
(dictrename ename oldsym newsym)

(dictsearch) Searches a dictionary for an item
(dictsearch ename symbol [setnext])

(distance) Determines the distance between two points
(distance point1 point2)

(distof) Converts a string to a real number
(distof string [mode])

(done_dialog) Terminates the dialog box
(done_dialog [flag])

	 D  Concise LISP Reference    567

E

(end_image) Ends the creation of a dialog box image
(end_image)

(end_list) Ends the processing of a dialog box list
(end_list)

(entdel) Deletes the entity
(entdel entity-name)

(entget) Retrieves the entity’s definition data
(entget entity-name [application-list])

(entlast) Gets the last entity in the drawing
(entlast)

(entmake) Adds an entity to the drawing
(entmake [entity-list])

(entmakex) Makes a new entity, give it a handle and return it’s new entity name
(entmakex [entity-list])

(entmod) Modifies the entity
(entmod entity-list)

(entnext) Returns the next entity in the drawing
(entnext [entity-name])

(entsel) Prompts the user to select an entity
(entsel [prompt])

(entupd) Redraws the entity
(entupd entity-name)

(eq) Determines whether two expressions are bound to the same symbol
(eq statement1 statement2)

(equal) Determines whether two statements are the same within an optional tolerance value
(equal statement1 statement2 [tolerance])

(*error*) Displays an error message
(*error* string)

(eval) Evaluates the LISP expression
(eval statement)

(exit) Terminates
(exit)

(exp) Calculates the natural exponent
(exp number)

(expand) Allocates additional memory for LISP
(expand integer)

(expt) Raises the number to the specified power
(expt base power)

568    Customizing BricsCAD V20

F

(fill_image) Fills a dialog box’s rectangle with color
(fill_image x y width height color)

(find) Returns item if item is found in list, otherwise it returns nil.
(find item list)

(findfile) Searches for the specified file or directory
(findfile filename)

(fix) Converts a real number to the nearest integer
(fix number)

(float) Converts an integer to a real
(float number)

(floor) Returns the greatest integer less than or equal to x.
(floor x)

(foreach) Evaluates the expression to every item in the list
(foreach variable list expression)

G

(gc) Performs garbage collection
(gc)

(gcd) Calculates the greatest common denominator
(gcd integer1 integer2)

(get_attr) Determines the attribute of a dialog box’s key
(get_attr key attribute)

(get_diskserialid) Returns a 9-digit unique id string, based on the first hard disk serial number. If the hard disk serial number can
not be obtained in very rare cases, the 9-digit unique id string is based on the serial number of the first partition. This id string
provides a licensing/hardlocking feature for LISP applications.

(get_diskserialid)

(get_tile) Determines the value of a dialog box’s tile
(get_tile key)

(getangle) Prompts the user to specify an angle
(getangle [point] [prompt])

(getcfg) Determines the value of the parameter
(getcfg parameter)

(getcname) Determines the localized command name
(getcname [_]command-name)

(getcorner) Prompts the user to specify the second corner of a rectangle
(getcorner point [prompt])

(getdist) Prompts the user to specify two points
(getdist [point] [prompt])

(getenv) Determines the value of the operating system variable
(getenv variable)

	 D  Concise LISP Reference    569

(getfiled) Displays the Open File dialog
(getfiled title filename ext flags)

(getint) Prompts the user to enter an integer
(getint [prompt])

(getkword) Prompts the user to select a keyword
(getkword [prompt])

(getorient) Prompts the user to specify an angle
(getorient [pt] [prompt])

(getpid) Returns the process ID of the current process.
(getpid)

(getpoint) Prompts the user to select a point
(getpoint [point] [prompt])

(getreal) Prompts the user to select a real number
(getreal [prompt])

(getstring) Prompts the user to enter a string
(getstring [flag] [prompt])

(getvar) Returns the value of a system variable
(getvar sysvar)

(graphscr) Switches to the graphics window
(graphscr)

(grarc) Draws a temporary arc or circle, with specified radius and color; optionally highlighted
(grarc ptCenter radius startAng endAng color [minsegments] [highlight])

(grclear) Clears the viewport
(grclear)

(grdraw) Draws a line
(grdraw point1 point2 color [highlight])

(grfill) Draws temporary filled polygon area, with specified color; optionally in highlighted mode
(grfill ptlist color [highlight])

(grread) Reads the data coming in from the input devices
(grread [flag] [bits [cursor]])

(grtext) Writes text on the status line
(grtext [flag text])

(grvecs) Draws one or more lines
(grvecs vector-lists [trans])

H

(handent) Returns the entity name based on its handle
(handent handle)

(help) Launches help
(help [filename [topic [flag]]])

570    Customizing BricsCAD V20

I

(if) Evaluates expressions conditionally
(if test statement1 [statement2])

(initdia) Forces the dialog box version of a command
(initdia [flag])

(initget) Initializes the keywords for next user-input
(initget [bits] [string])

(inters) Finds the intersection
(inters point1 point2 point3 point4 [flag])

(itoa) Converts integer to string
(itoa integer)

L

(lambda) Defines an unnamed LISP function
(lambda arguments expression)

(last) Returns the last item in the list
(last list)

(length) Returns the number of elements contained in a list
(length list)

(list) Create a list
(list expression ...)

(listp) Confirms that an item is a list
(listp item)

(load) Loads the LISP file
(load filename [flag])

(load_dialog) Loads the DCL file
(load_dialog filename)

(log) Calculates the natural logarithm
(log number)

(log10) Returns the base-10 logarithm of x.
(log10 x)

(logand) Determines what is the logical AND
(logand integer1 integer2 ...)

(logior) Determines what is the logical OR
(logior integer1 integer2 ...)

(lsh) Does a bitwise shift
(lsh integer1 integer2)

	 D  Concise LISP Reference    571

M

(mapcar) Applies the function to the list
(mapcar function list1 [list2])

(max) Returns the largest number
(max number1 number2 ...)

(mem) Displays the status of the LISP memory
(mem)

(member) Identifies the first occurrence of an item in the list
(member item list)

(menucmd) Executes the menu command
(menucmd string)

(menugroup) Determines whether a menu group is loaded
(menugroup name)

(min) Returns the smallest number
(min number1 number2 ...)

(minusp) Determines whether a value is a negative number
(minusp number)

(mode_tile) Sets the mode of the dialog box tile
(mode_tile key mode)

N

(namedobjdict) Returns the current drawing’s named object dictionary (Root)
(namedobjdict)

(nentsel) Prompts the user to select an entity within a complex entity
(nentsel [prompt])

(nentselp) Operates like nentsel but without user input
(nentselp [prompt] [point])

(new_dialog) Displays a dialog box
(new_dialog dialog dcl-id [function point])

(not) Determines whether an item is nil
(not item)

(nth) Determines the nth item in the list
(nth integer list)

(null) Determines whether the item is bound to nil
(null item)

(numberp) Determines whether an item is a number
(numberp item)

572    Customizing BricsCAD V20

O

(open) Opens file for access by LISP read-write-append functions
(open filename mode)

(or) Calculates the logical OR
(or statement)

(osnap) Returns 3D point as result of applying the specified entity snap
(osnap point mode)

P

(polar) Returns 3D point defined by angle and distance of specified point
(polar point angle distance)

(position) Returns the index ot item in list or nil (first index is 0).
(position item list)

(prin1) Prints string
(prin1 [expression [file-descriptor]])

(princ) Prints string taking into account control characters
(princ [expression [file-descriptor]])

(print) Prints string using formatted printing
(print [expression [file-descriptor]])

(progn) Evaluates each expression sequentially and returns the value of the last expression
(progn statement1 statement2)

(prompt) Prints message on the command line
(prompt string)

Q

(quit) Quits the current LISP routine
(quit)

(quote) Returns an expression without evaluating it
(quote statement)

R

(read) Determines the first item in a string
(read string)

(read-char) Reads a single character
(read-char [file-descriptor])

(read-line) Reads an entire line
(read-line [file-descriptor])

(redraw) Redraws the viewport or just a single entity
(redraw [ename [mode]])

	 D  Concise LISP Reference    573

(regapp) Registers the application
(regapp appname)

(rem) Determines the remainder of this division operation
(rem number1 number2 [number3])

(remove) Returns the input list, with item removed from the list.
(remove item list)

(repeat) Evaluates each expression a specified number of times
(repeat number statement1 [statement2])

(reverse) Returns a copy of a list with its elements reversed
(reverse list)

(round) Returns the integer nearest to x.
(round x)

(rtos) Converts real to string
(rtos number [mode [precision]])

S

(search) Searches for list1 in list2 and returns the index where found or nil (first index is 0).
(search list1 list2)

(set) Assigns the statement to the symbol
(set symbol statement)

(set_tile) Sets the value of the dialog box tile
(set_tile key value)

(setcfg) Sets the parameter to the value
(setcfg parameter value)

(setenv) Sets the operating system variable to that value
(setenv variable value)

(setfunhelp) Registers the command with that Help file
(setfunhelp “c:filename” [helpfile [topic [command-name]]]])

(setq) Sets the symbol to the statement
(setq symbol1 statement1 [symbol2 statement2])

(setvar) Sets the system variable to that value
(setvar sysvar value)

(setview) Creates a 3D viewpoint
(setview view-descriptor [vport])

(sin) Calculates the sine
(sin angle)

(sinh) Returns the hyperbolic sine of x.
(sinh x)

(slide_image) Displays a slide in the dialog box
(slide_image x y width height slide)

574    Customizing BricsCAD V20

(sleep) Delays execution for (approx.) given milliseconds
(sleep millisecs)

(snvalid) Determines whether the symbol is made-up of valid characters
(snvalid symbol [flag])

(sqrt) Calculates the square root
(sqrt number)

(ssadd) Adds the entity to the selection set
(ssadd [entity-name [selection-set]])

(ssdel) Deletes the entity from the selection set
(ssdel entity-name selection-set)

(ssget) Creates a selection set
(ssget [mode] [point1 [point2]] [point-list] [filter-list])

(ssgetfirst) Determines which entities are highlighted and/or gripped
(ssgetfirst)

(sslength) Determines how many entities are in the selection set
(sslength selection-set)

(ssmemb) Determines whether an entity is in the selection set
(ssmemb entity-name selection-set)

(ssname) Identifies the nth entity in the selection set
(ssname selection-set index)

(ssnamex) Retrieves information about how a selection set was created
(ssnamex selection-set index)

(sssetfirst) Determines which objects are selected and gripped
(sssetfirst grip-set [pick-set])

(startapp) Launches Windows application
(startapp appname [filename])

(start_dialog) Starts the dialog box
(start_dialog)

(start_image) Starts creating a dialog box image
(start_image key)

(start_list) Starts processing a list box
(start_list key [operation [index]])

(strcase) Converts string to all upper- or all lower-case
(strcase string [flag])

(strcat) Concatenates strings
(strcat string1 [string2] ...)

(string-split) Returns a list of strings divided by any character in string-of-delimiters. Example: (string-split bbb;ccc,ddd”) => (“aaa”
“bbb” “ccc” “ddd”)

(string-split string-of-delimiters string)

(strlen) Returns the number of characters in a string
(strlen [string1] [string2] ...)

	 D  Concise LISP Reference    575

(subst) Returns a copy of a list with its elements substituted
(subst new old list)

(substr) Returns a substring of a string
(substr string start [length])

T

(tablet) Retrieves and sets digitizer (tablet) calibrations
(tablet code [row1 row2 row3 direction])

(tan) Returns the tangent of x - x must be in radians.
(tan x)

(tanh) Returns the hyperbolic tangent of x.
(tanh x)

(tblnext) Finds the next item in a symbol table
(tblnext table-name [flag])

(tblobjname) Returns the entity name of a specified symbol table entry
(tblobjname table-name symbol)

(tblsearch) Searches the table for a symbol
(tblsearch table-name symbol [flag])

(term_dialog) Terminates the dialog box
(term_dialog)

(terpri) Prints a carriage return
(terpri)

(textbox) Returns the bounding box of a text entity
(textbox entity-list)

(textpage) Switches focus from the drawing area to the text screen
(textpage)

(textscr) Switches focus from the drawing area to the text screen
(textscr)

(trace) Turns on debug mode
(trace function)

(trans) Translates that point from one coordinate system to another
(trans point from to [flag])

(trim) Removes leading and trailing blanks
(trim string [flag])

(type) Returns the type of a specified item
(type item)

576    Customizing BricsCAD V20

U

(unload_dialog) Unloads that dialog box
(unload_dialog dcl_id)

(until) Repeats the expression(s) until test-expression evaluates as T (true).
(until test-expression [expression ...])

(untrace) Turns off debug mode
(untrace function)

V

(vector_image) Draws a vector in the dialog box
(vector_image x1 y1 x2 y2 color)

(ver) Determines the version number of this LISP
(ver)

(vmon) Turns on virtual memory
(vmon)

(vports) Gets information about this viewport
(vports)

W

(wcmatch) Performs a wild-card pattern match on a string
(wcmatch string pattern)

(while) Evaluates other expressions while test expression is true
(while test statement ...)

(write-char) Writes the character to a file
(write-char character [file-descriptor])

(write-line) Writes the string to a file
(write-line string [file-descriptor])

X

(xdroom) Determines the amount of space for xdata still available for an entity
(xdroom entity-name)

(xdsize) Determines how much space a list takes up as xdata
(xdsize list)

Z

(zerop) Determines whether this number is zero
(zerop number)

	 D  Concise LISP Reference    577

#

(+) Returns the sum of all numbers
(+ number1 number2 ...)

(-) Subtracts second (and following) from first number
(- number1 number2 ...)

(*) Returns the product of all numbers
(* number1 number2 ...)

(/) Divides the first number by the following numbers
(/ number1 number2 ...)

(~) Applies the 1s compliment (bitwise NOT)
(~ number)

(=) Compares arguments for equality
(= item1 item2)

(/=) Compares arguments for inequality
(/= item1 item2)

(<) Returns T if first argument is less than others
(< item1 item2)

(<=) Returns T if first argument is less than or equal to all other arguments
(<= item1 item2)

(>) Returns T if first argument is greater than all other arguments
(> item1 item2)

(>=) Returns T if first argument is greater than or equal all other arguments
(>= item1 item2)

(1+) Increments number by 1
(1+ number)

(-1) Decrements number by 1
(1- number)

	Concise LISP Reference
	Concise DCL Reference
	Summary of Variables & Settings
	Command Summary
	Appendices
	Dabbling in VBA
	Designing Dialog Boxes with DCL
	Programming with LISP
	Writing Scripts
	Programming BricsCAD
	Coding with Field Text
	Decoding Shapes & Fonts
	Patterning Hatches
	Creating Simple & Complex Linetypes
	Designing Tool & Structure Panels
	Other Customizations in BricsCAD
	Customizing Rollover Properties
	Customizing the Quad
	Customizing Mouse, Double-click,
& Tablet Buttons
	Customizing Keystroke Shortcuts, Aliases, & Shell Commands
	Customizing Ribbon Tabs and Panels
	Writing Macros and Diesel Code
	Customizing Toolbars and Button Icons
	Customizing the Menu Bar & Context Menus
	Introduction to the Customize Dialog Box
	Working with the Customize Dialog Box
	Adapting the User Interface To You
	Changing BricsCAD’s Environment
	Adjusting BricsCAD’s Settings
	Introduction to How to Customize BricsCAD
	Customizing the BricsCAD Environment
	Full Table of Contents
	Customizing Multiple UIs with Workspaces
	LISP Function Summary
	LISP Functions for Dialog Boxes
	Dialog Boxes Displayed by LISP Functions
	Alert
	Help)
	Acad_HelpDlg
	AcadColorDlg
	Acad_TrueColorDlg
	InitDia

	Concise LISP Reference

	Conversion Routines
	PointToString Conversion Function
	Private Function PointToString(vIn As Variant) As String
	Quick Summary of VBA Predefined Constants

	Dim sPt As String: sPt = vbNullString
	Dim iPrecision As Integer
	iPrecision = ThisDrawing.GetVariable("LUPREC")
	If VarType(vIn) > vbArray Then
	sPt = StringFromValueFixedDecimal(vIn(0), iPrecision) & ", "
	sPt = sPt & StringFromValueFixedDecimal(vIn(1), iPrecision) & ", "
	sPt = sPt & StringFromValueFixedDecimal(vIn(2), iPrecision)
	End If
	PointToString = sPt
	End Function

	StringToPoint Conversion Function
	Dim sCoords() As String: sCoords = Strings.Split(sIn, ",")
	If UBound(sCoords) = 0 Then
	tmpPt(0) = Val(sCoords(0))

	Loading and Running LastInput.Dvb
	Quick Summary of VBA Variable Declarations

	Appendices
	Command Summary
	Summary of Variables & Settings
	Concise DCL Reference
	Quick Reference of DCL Tile Names
	Quick Reference of DCL Attributes

	Exiting Dialog Boxes
	Quick Reference of LISP Functions
for Dialog Boxes
	Quick Reference of Dialog Boxes Displayed
by LISP Functions
	Summary of Tile References

	Multiple Radio Buttons
	Multiple_Select
	Errtile
	Value and Mnemonic

	LastInput.Dvb
	Quick Summary of VBA String Manipulation

	Dialog Box with Code
	Designing the Dialog Box
	Adding the Code
	Clicking Cancel
	Quick Summary of VBA Data Types
	Quick Summary of VBA Data Type Return Values

	Object-Oriented Programming
	Common Object Model
	Object Browser
	Line Entity
	Properties
	Methods
	Events

	Sending Commands
	Embedded or External
	Writing and Running VBA Routines
	Displaying Messages
	Constructing Dialog Boxes
	BricsCAD V20 Automation Object Model

	Introduction to VBA
	Accessing VBA Programs

	Additional Resources
	Dabbling in VBA
	Quick Summary of VBA Program Components
	Quick Summary of VBA Commands in BricsCAD

	Debugging DCL
	Dcl_Settings
	DCL Error Messages
	Semantic error(s) is DCL file
	Dialog has neither an OK nor a CANCEL button
	Error in dialog file "filename.dcl", line n
	Dialog too large to fit on screen

	Examples of DCL Tiles
	Buttons
	Making Buttons Work
	Check Boxes
	Radio Buttons

	Clusters
	Columns and Rows
	Boxed Row
	Boxed Row with Label
	Special Tiles for Radio Buttons

	Testing DCL Code
	LISP Code to Load and Run Dialog Boxes
	Displaying Data from System Variables
	Adding the Complimentary LISP Code
	Clustering Text
	Supplying the Variable Text
	Leaving Room for Variable Text

	Fixing the Button Width
	Centering the Button

	Testing the Dialog Box
	Defining the Command

	Your First DCL File
	DCL Programming Structure
	Start Dialog Box Definition
	Quick Summary of DCL Metacharacters

	Dialog Box Title
	OK Button
	The Default Tile

	What Dialog Boxes Are Made Of
	How DCL Operates

	Saving Data to Files
	The Three Steps
	Step 1: Open the File
	Step 2: Write Data to the File
	Step 3: Close the File

	Putting It Together
	Wishlist #5: Layers
	Wishlist #6: Text Style

	Tips in Using LISP
	Tip #1. Use an ASCII Text Editor.
	Tip #2: Loading LSP Code into BricsCAD
	Tip #3: Toggling System Variables
	Tip #4: Be Neat and Tidy.
	Tip #5: UPPER vs. lowercase
	Tip # 6: Quotation Marks as Quotation Marks
	Tip #7: Tabs and Quotation Marks

	Designing Dialog Boxes with DCL
	A Quick History of DCL

	Adding to the Simple LISP Program
	Conquering Feature Bloat
	Wishlist Item #1: Naming the Program
	Defining the Function - defun
	Naming the Function - C:
	Local and Global Variables - /
	Wishlist Item #2: Saving the Program
	Wishlist Item #3: Automatically Loading the Program
	Wishlist #4: Using Car and Cdr

	Writing a Simple LISP Program
	Why Write a Program?
	The Id Command

	The Plan of Attack
	Obtaining the Coordinates

	Placing the Text
	Putting It Together

	LISP Function Overview
	Math Functions
	Geometric Functions
	Distance Between Two Points
	The Angle from 0 Degrees
	The Intersection of Two Lines
	Entity Snaps

	Conditional Functions
	Other Conditionals

	String and Conversion Functions
	Joining Strings of Text
	Converting Between Text and Numbers
	Other Conversion Functions

	External Command Functions
	GetXXX Functions
	Selection Set Functions
	Entity Manipulation Functions
	Advanced LISP Functions

	The LISP Programming Language
	Simple LISP: Adding Two Numbers
	LISP in Commands
	Remembering the Result: setq

	The History of LISP in BricsCAD
	BLADE Environment
	Compatibility between LISP and AutoLISP
	Additional LISP Functions
	Different LISP Functions
	Missing AutoLISP Functions

	Script Commands and Modifiers
	Script
	RScript
	Resume
	Delay
	Special Characters
	Enter - (space)
	Comment - ;
	Transparent - '
	Pause - Backspace
	Stop - esc

	Programming with LISP

	Writing Scripts by Hand
	Recording with RecScript
	What are Scripts?
	Drawbacks to Scripts
	Strictly Command-Line Oriented

	Objects and Property Names
	Properties in Common
	Object Properties
	Arcs
	Attribute Definition
	Associative Dimensions
	Blocks, Block Placeholders, and External References
	Circles
	Ellipses
	Hatches
	Leaders
	Lines
	Mtext
	OLE (object linking and embedding) objects
	Polylines
	Polygon Meshes
	Polyface Meshes
	Raster Images
	Regions
	Rays and Xlines
	Shapes
	Single-line Text
	Splines
	Tables
	Tolerances
	Viewports
	3D Faces
	3D Polylines
	3D Solids
	Sheet SetS

	Named Object Properties
	Programming BricsCAD
	Writing Scripts

	Complete Field Code Reference
	Groups
	Metawords
	Formatting
	Complete Format Code Reference
	%tcn — Text Case
	%lun — Linear Units
	%dsn — Decimal Separator
	%aun — Angular Units
	%lwn — Line Weight units
	%qfn — scale Factor
	%ctn — ConverT
	%ptn — PointTs (xyz coordinates)
	%.n — decimal places
	%prn — display PRecision

	%fnn — File Names
	%byn — BYtes (file size)
	href - Hyperlinks
	Quick Summary of Field Date and Time Codes

	Date & Time Format Codes

	Understanding Field Codes
	Another Field Text Example
	Updating the Field Text
	Compatibility with AutoCAD Field Codes

	Controlling the Way Fields Update
	UpdateField Command
	FieldEval Command
	FieldDisplay Command

	Changing Field Text
	Double-clicking Fields in MText
	Editing Fields in Attribute Definitions

	Placing Field Text
	Field Command
	Fields in MText
	Fields in Attributes

	About Shape Files
	The Shape File Format
	Header Fields
	Definition Start
	shapeNumber
	totalBytes
	shapeName

	Definition Lines
	bytes

	Vector Codes
	Hexadecimal Conversion

	Instruction Codes
	End of Shape - 0/000
	Draw Mode - 1/001
	2/002: Move Mode -
	Reduced Scale - 3/003
	Enlarged Scale - 4/004
	Save (Push) - 5/005
	Recall (Pop) - 6/006
	Subshape - 7/007
	X,y Distance - 8/008
	X,y Distances - 9/009
	Octant Arc - 10/00A
	Fractional Arc - 11/ 00B
	Bulge Arc - 12/00C
	Polyarc - 13/00D
	Flag Vertical Text Flag - 14/00E

	Coding with Field Text
	Field Commands & Variables

	Fonts, Complex Linetypes, and Shapes
	SHX Fonts
	About Fonts in BricsCAD

	Using SHX in Complex Linetypes
	SHX in Shapes
	SHX in GD&T
	Shape Compatibility with AutoCAD

	Understanding the .pat Format
	Comment and Header Lines
	Comment
	Start of Definition
	Pattern Name
	Description

	The Hatch Data
	Angle
	xOrigin and yOrigin
	xOffset and yOffset
	Dash1,...

	Adding Samples to the Hatch Palette
	Tips on Creating Pattern Codes
	Decoding Shapes & Fonts
	Quick Summary of Shape Definitions

	Creating Custom Hatch Patterns
	-Hatch Command
	Hatch Command

	Where Do Hatch Patterns Come From?
	How Hatch Patterns Work
	System Variables that Control Hatches

	Linetype Format (.lin)
	Line 1: Header
	Line 2: Data
	Complex (2D) Linetypes
	Embedding Text in Linetypes
	Text
	Text Style
	Text Scale
	Text Rotation
	Absolute
	X and Y Offset

	Patterning Hatches
	Quick Summary of Pattern Definitions

	Customizing Linetypes
	At the Command Prompt
	Testing the New Linetype

	Creating Linetypes with Text Editors

	About Simple and Complex Linetypes
	Commands Affecting Linetypes
	Loading Linetypes
	Scaling Linetypes

	System Variables Affecting Linetypes
	The Special Case of Paper Space
	The Special Case of Polylines

	Customizing the Structure Panel
	Structure Configurations
	Customizing the Structure Panel
	Structure OF .cst Files
	Group/Sort Tab
	Examining Rules
	Constructing Rules
	Show/Skip Tab
	Options Tab

	Creating Simple & Complex Linetypes
	Quick Summary of Linetype Definitions

	Organizing Tools with Groups
	Creating Palette Groups
	Importing Tool Palettes from AutoCAD
	Sharing Tool Palette Groups by Exporting Them
	Alternative Sharing Method

	Customizing Tools
	Customizing Tools Properties
	Adding Programs and Macros to Tools

	Navigating Tools Palettes
	Icon Customization
	Palette Customization

	About the Tool Palettes Panel
	Quick Summary of View Options

	Workspace Customization Elements
	Adding and Removing Workspaces
	Removing Workspaces
	About Insert Separator

	Toggling the Display of UI Elements
	Workspace Property Toggles
	Show Menus

	Toggling Visibility of UI Elements
	Toggling Menus
	Toggling Toolbars
	Toggling Panels
	Toggling Ribbons
	Toggle the Quad

	Fine-Tuning UI Elements
	Workspace Properties for Menus
	Properties of Toolbars
	Properties of Panels
	Proprieties of Ribbon Tabs
	Properties of Quad Items

	Other Customizations in BricsCAD
	Designing Tool & Structure Panels

	Customizing Rollover Properties
	Tutorial: How to Change Properties Displayed by Rollovers
	Customizing Multiple UIs with Workspaces

	Customizing the Quad
	Tutorial: Customizing Quad Buttons
	Customizing Quad Tabs
	Where’s My New Tab?
	Tutorial: Turning On Quad Groups (Tabs)
	Toggling Quad Tabs

	About Quad ENtity Filters
	Tutorial: Changing Entity Filters
	How the Quad Works. Or, How Does It Know What Entity Is There?

	Customizing Rollover Properties
	Quick Summary of Rollover Property Settings
	Quick Summary of Rollover Properties

	Defining Actions for Tablet Buttons
	Customizing the Quad
	Quick Summary of Quad Variables

	About The Quad
	Step 1: Move Cursor Onto an Entity
	Step 2: Expand the Quad
	Step 3: Move Into Groupings

	Tutorial: Drawing with Quad
	Tutorial: Dimensioning with Quad

	Modifying the Quad’s Behavior

	Defining Actions for Mouse Buttons
	Tutorial: Button Assignment
	Tutorial: Assigning Shortcut Menus to Buttons
	Tutorial: Writing Macros for Buttons

	Customizing Double-click Actions
	Changing a Double-click Action
	Making a New Double-click Action

	About Mice and Their Buttons
	Quick Summary of Default Buttons
	About the Pick Button
	About the Right Button
	About the Middle Button
	Troubleshooting

	Other Input Devices
	Digitizing Tablets
	3D Mice
	Touch Pads

	Customizing Shell Commands
	Tutorial: Editing Shell Commands
	Customizing Mouse, Double-click,
& Tablet Buttons

	Customizing Command Aliases
	Tutorial: Customizing Aliases
	Tutorial: Creating New Aliases
	Tutorial: Editing & Deleting Aliases
	BricsCAD Aliases Sorted by Command Name

	Rules for Writing Aliases
	Tutorial: Hand-Coding Aliases

	The Structure of Ribbons
	Tutorial: How to Add Panels to Ribbon Tabs
	Moving Panels
	Copying Panels — Not
	Removing Panels

	Tutorial: Making New Tabs
	QUICK Summary of Contextual Tabs
	Adding Panels to A New Ribbon Tab
	Moving Tabs Along the Ribbon
	Making Copies of Tabs
	Hiding Tabs in a Workspace

	Customizing Ribbon Panels
	Panel Design Tips

	Tutorial: Populating a new Panel
	Catalog of Panel Elements
	Append Ribbon Panel / Insert Ribbon Panel
	Delete
	Add Launcher
	Append Row / Insert Ribbon Row / Insert Row Panel
	Append Break / Insert Ribbon Break / Append Separator
	Append Split Button
	Append Toggle Button

	Customizing Keystroke Shortcuts, Aliases, & Shell Commands
	Quick Summary of Shortcut Keystrokes

	Tutorial: Defining Shortcut Keys
	Tutorial: Editing & Deleting Keyboard Shortcuts
	Tutorial: How to Assign Multiple Commands

	Complete Catalog of Diesel Functions
	Math Functions
	Logic Functions
	Conversion Function
	String Functions
	System Functions
	Diesel Programming Tips
	Debugging Diesel
	ModeMacro: Displaying Text on the Status Bar

	Customizing Ribbon Tabs and Panels
	QUICK Summary of Ribbon Commands and Variables

	Formatting Diesel Output
	Formatting Numbers
	Fix
	Index
	Nth
	Rtos
	Formatting Angles

	Formatting Text
	Upper
	StrnLen

	Variables in Diesel

	Diesel Coding
	About Diesel
	Quick Summary of Diesel Functions

	How to Toggle Check marks
	Toggling Grayouts

	Reporting Values of System Variables
	Applying Variables Everywhere
	How to Add Units
	How to Solve Check Marks that Conflict with Icons
	How to Deal with Two Sysvars
	Reporting Through Diesel
	Formatting Units

	Simple Macros
	Transparent Commands in Macros
	Dashed Commands

	Options & User Input
	Options
	Pausing for User Input
	Combining Options and Pauses
	Other Control Keys

	Menu-Specific Metacharacters

	Customizing Buttons
	Sizing Buttons
	Modifying Button Parameters
	Tutorial: Editing the Title Name and the Help String
	Tutorial: Changing the Command Macro
	Tutorial: Replacing Button Images

	Writing Macros and Diesel Code
	Quick Summary of Metacharacters in Macros

	Adding Controls, Flyouts, and Separators
	About Controls (Droplists)
	Tutorial: Adding Controls (Droplists) to Toolbars
	Customizing Controls (Droplists)

	About Flyouts
	Tutorial: Adding Flyouts to Toolbars

	About Separators
	Tutorial: Adding Separators to Toolbars

	Removing Buttons, Renaming and Deleting Toolbars
	Tutorial: Removing Buttons and Toolbars
	Tutorial: Renaming Toolbars and Buttons

	Making New Toolbars, and Modifying Them
	Tutorial: How to Create A New Toolbar
	Tutorial: Alternative Method

	Customizing the Look of Toolbars
	Rearranging Toolbars
	Tutorial: Dragging and Moving Toolbars
	Quick Summary of Toolbar Parameters

	Tutorial: Turning Toolbars On and Off

	Tutorial: Sharing Menus
	Importing AutoCAD Menus
	Customizing Toolbars and Button Icons
	Quick Summary of Toolbar Commands & Variables

	Context Menus
	Tutorial: Customizing Context Menus

	Tutorial: Adding Tools to Menus
	Tutorial: Adding Menu Items
	Tutorial: Deleting Menu Items

	Using Partial Menus to Customize BricsCAD Correctly
	Setting Up a New Partial Menu
	Sharing Customizations
	Removing Partial CUI Files

	Customizing the Menu Bar & Context Menus
	Modifying the Menu Bar
	Quick Summary of Menu Commands & Variables
	Touring the Menu Tab
	Quick Summary of Menu Parameters

	Opening and Closing Nodes
	Gray Dots and Separator Lines

	Understanding Menu Title Conventions
	Keyboard Shortcut - &
	Dialog Box - ...
	Menu Titles

	Commands Use Macros
	Cancel - ^c
	Transparent - '
	Internationalize - _
	Enter - ;
	Pause - \

	Editing the Help String

	Touring the Customize Dialog Box
	ABOUT Cui Files
	Customize’s Menu Bar
	About Main and Partial Customization
	CUI Customization Files

	Search For Commands
	Tabs of the Customize Dialog Box
	Shortcut Menus
	Apply and OK Buttons
	Viewing Changes Made to Customize
	Additional Management Options

	Customizing Other UI Elements
	Working with the Customize Dialog Box
	Introduction to the Customize Dialog Box

	Maximizing the Drawing Area
	Using Multiple Monitors

	Customizing the Look From Control
	LookFrom Command
	Related System Variables

	Customizing the Look of Drawing Tabs
	Related System Variables

	Customizing the Look of the Ribbon
	Handling the Ribbon
	Related System Variables

	Customizing the Command Line
	The Parts of the Command Bar
	Resizing and Hiding the Command Line
	Changing Command Bar Actions
	Additional Command Line Variables
	Even More Command Line Variables

	Reusing User Preferences
	Launching the User Profile Manager
	Using the Profile Manager

	Adapting the User Interface To You

	Support File Paths
	Summary of Files Settings
	Files (and Paths)
	Project Paths
	Printer Support Paths and Files
	Templates Paths and Files
	Tool Palettes Path
	Dictionaries Section
	Log Files Paths and Files
	File Dialogs
	Places Bar (Windows only)

	Changing the Colors of the User Interface
	Theme Color
	Background Color
	Settings at the Command Line

	Changing Cursor Color and Size
	Display Settings

	Snap Marker Options
	Hyperlink Cursor Options
	Dynamic Dimension Options

	Starting BricsCAD
	Command Line Options
	Catalog of Command-Line Switches
	No Switch - Load Drawings
	B Switch - Script Files
	L Switch - No Logo
	LD Switch - Application Load
	S Switch - Search Support Paths
	P Switch - User Profiles
	PL Switch - Batch Plotting
	T Switch - Template Files
	Regserver and Unregserver Switches

	Other Startup Controls

	Changing Variables at the Command Prompt
	Changing BricsCAD’s Environment

	Touring the Settings Dialog Box
	Settings Dialog Box: Toolbar
	Categorized/Alphabetic Sorting
	Show Differences
	Dialog Configuration
	Finding Variables
	Export Settings
	Exporting Variables

	Accessing Variables and Changing Values
	Variables Specific to Windows

	For Further Reference
	Reference and Tutorial Books
	BricsCAD API References
	DWG, DXF, and DWF References
	Adjusting BricsCAD’s Settings

	61 Tips for BricsCAD Users
	The Many Ways to Customizing
	Which Customization Do You Use?
	Versions of BricsCAD

	Introduction to How to Customize BricsCAD
	Customizing the BricsCAD Environment

